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Abstract

In this research, we investigate semi-cycles, boundedness, per-
sistence of positive solutions, and global asymptotic stability of
the unique positive equilibrium of two different systems of two

nonlinear difference equations. The first system is:

_ Ty
:UnH:A—l—yn k, Yni1 = B+ k, n=0,1,....

n xn

where A, B are positive real numbers, the initial conditions
xi,y; € (0,00) for i = —k,—k+1,...,0 and k € Z". The second

system is:

Tni1 = A+ yn, Yni1 = A+ , n=0,1,....
Yn—k Tn—k

with parameter A € (0,00), and z;,y; are arbitrary positive

numbers for i = -k, —k+1,...,0 and k € Z™.
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Chapter

Preliminaries

1.1 Introduction

) )iscrete dynamical systems and difference equations have captured the

interest of the researchers in the last few years, especially these equa-
tions which arise in mathematical models that describe problems in physics,
biology, economics and engineering. Studying the dynamical behavior of dif-
ference equations and systems is not only of interest in their own right, but
the results can help to develop the theory of difference equations. Difference
equations might sometimes have simple forms, however, it is crucially hard

to fully understand the behavior of their solutions.

Recently, nonlinear difference equations and systems are of wide interest
[1-6,9-25]. Particularly, in 1998, Papaschinopoulos and Schinas [16] studied

the oscillatory behavior, periodicity and boundedness of the solutions of the
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following system of difference equations:

n T
Tpp1 = A+ Y s Ynt1 = A+ , n=0,1,... (1.1)
xﬂ*p ynfq

where A > 0 and p, ¢ are positive integers. They proved that any positive
solution of (1.1) oscillates about the equilibrium (z,7) = (A+ 1, A+ 1), and
if A > 0 and at least one of p,q is an odd number (respectively, A > 1 and
p,q are both even numbers), then any positive solution of (1.1) is bounded.
Moreover, they proved that if A > 1, then the unique positive equilibrium
of system (1.1) is globally asymptotically stable. Moreover, they considered
system (1.1) in the case that A = 0 and p = ¢ = 1, and found that every

solution of system (1.1) in this case is periodic of period 6.

After that, in 2000, Papaschinopoulos and Schinas [17] investigated the

system:

T e
G = A+l A 0, (1.2)

n xn

where A is a positive constant and z_1, xg, y_1, Yo are positive numbers. They
proved that the positive solution of system (1.2) oscillates about the equilib-
rium (z,y) = (A+ 1, A+ 1). Moreover, they proved that system (1.2) has
periodic solutions of period two if A = 1, and that any positive solution of
system (1.2) tends to the equilibrium as n — co. Furthermore, they showed
that if 0 < A < 1, then system (1.2) has unbounded solutions. If A = 1,
then every positive solution of (1.2) tends to a periodic solution of period
two, and if A > 1 then the positive equilibrium (Z,7) = (A + 1, A+ 1) of

(1.2) is globally asymptotically stable.

Whereas Papaschinopoulos and Papadopoulos [15] studied, in 2002, the
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existence of positive solutions of the equation:

Tpt1 = A+ T , n=0,1,... (1.3)

xnfm

they found that there exist bounded and unbounded solutions of (1.3). They

also introduced the following system of difference equations:

Ty, n
xn+1:A+ ) yn—|—1:B+ Y s nzO,l,... (14)

Yn—m Tn—m
where m € {1,2,...}, and Z_,, T i1y 05 Yoy Y—mtds - - - » Yo A€ POSi-

tive constants and A, B are positive real numbers. They proved that if A > 1
and B > 1, then the solution of (1.4) is bounded and persists, and there will
be a unique positive equilibrium (Z, ) of system (1.4), and that every pos-
itive solution of (1.4) tends to that unique positive equilibrium as n — oc.

They could also found unbounded solutions when 0 < A< lor0< B < 1.

In 2004, Camouzis and Papaschinopoulos [2] studied the boundedness

and persistence of the positive solutions of the following system:

T n
xn+1:1+ ) yn+1:1+ Y ) n:O,l,... (15)

n—m xn—m

where x;,y; are positive numbers for ¢ = —m,—m + 1,...,0 and m is a
positive integer. Furthermore, they proved that (1.5) has an infinite number
of positive equilibrium solutions and that every positive solution converges

to a positive equilibrium solution (z,7) = (2,2) as n — oc.
In 2007, Y. Zhang et al. [25] introduced the system:

yn—m

Tagr = A T yn+1=A+xZ‘m, n=01,... (1.6)

where the parameter A and the initial conditions x;, y; are positive real num-
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bers for i = —m,—m + 1,...,0, and m is a positive integer. Zhang et al.
proved that the unique positive equilibrium of (1.6) is globally asymptotically
stable for A > 1, and the positive solution of system (1.6) is bounded and
persists when A > 1, they also found unbounded solutions of system (1.6)
when 0 < A < 1, and showed that for A = 1, if m is odd then any positive

solution of (1.6) with prime period two is of the form

a a a a
),(a,a),(a_l,a_l),...

o (a,a),(

a—1"a—1
where 1 < a # 2, however, if m is even then any positive solution of (1.6)

with prime period two takes the form

a a a a
’a_1)7<a_17a)7(a7a_1)’<a_17a)7"'

., (a

where 1 < a # 2.

While Q. Zhang, Yang, and Liu [24] in 2013 investigated the boundedness,
persistence of positive solutions and global asymptotic stability of the positive

equilibrium of the system:

:Bn—m n—m
Tap = A+ g =B+ =01, (1.7)

n xn

where A, B, z;,y; € (0,00) for i = —m,—m +1,...,0 and m € Z*. They
found unbounded solutions for system (1.7) when A and B are less than one,
and proved that when A > 1 and B > 1 the positive solution of system (1.7)
is bounded and persists, and when A > 1 and A > 1 the positive equilibrium

point (Z,y) = (ABB__ll, AAB__ll) is globally asymptotically stable.

In 2014, Q. Zhang et al. [23] investigated the global asymptotic behavior
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of the system of the following two rational difference equations:

Tp Yn

xn—&-l:A"‘k—? yn+1:B+k—, n:(),l,... (18)
Zi:l Yn—i Zizl Tp—i

where A, B, x;,y; are positive real numbers for ¢ = —k,—k + 1,...,0 and

k € Z*. More precisely, Zhang et al. proved that if A > % and B > %, then

every positive solution of system (1.8) is bounded and persists. Moreover,
they proved that every positive solution converges to the positive equilibrium

(Z,7) as n — 0.

Finally, D. Zhang et al. [22] introduced the system

e Ty
Tapr = A+ = AR 20, (1.9)

n ‘TTL

with parameter A > 0, and the initial conditions z;,y; are arbitrary positive
real numbers for i+ = —k,—k + 1,...,0 and k € Z'. They studied the
asymptotic behavior of positive solutions of the system in the cases 0 < A <
1,A=1and A > 1. When 0 < A < 1, they could find unbounded solutions
of system (1.9), and when A = 1 they proved that system (1.9) can have two
periodic solutions, and any positive solution is bounded and persists. They
also proved that the unique positive equilibrium point (z,y) = (A+1, A+1)
is a global attractor when A > 1. Later in 2018, Gumus [10] investigated the
semi-cycles of the positive solutions for the same system. They also proved
that if A > 1 then the unique positive equilibrium point (zZ,y) = (A+1, A+1)

is globally asymptotically stable.

Other related difference equations and systems can be found in references
[1,3-6,9,11-14,18-21]. More details about the theory of difference equations

are provided in [7,8].
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Motivated by all the systems we previously mentioned, we introduce in

Chapter 2 the system

n— T
an:A—i—y k, Yni1 = B + k, n=20,1,...

Yn In

with parameters A > 0 and B > 0, the initial conditions z;, y; are arbitrary
positive numbers for i = —k, —k + 1,...,0 and k € Z". In Chapter 3, we

introduce the system

n ‘TTL
Tpr1 = A+ J y Ynar = A+ , n=0,1,...
Yn—k Tn—k

with parameter A > 0, the initial conditions z;,y; are arbitrary positive
numbers for i = —k,—k+1,...,0 and k € Z". As far as we know, no work

has been reported in the literature on the dynamics of these two system.

In Chapter 2, we study the semi-cycles of the positive solutions of system
(2.1), we also find unbounded solutions of the same system when 0 < A < 1
and 0 < B < 1, we prove that the positive solutions of system (2.1) are
bounded and persist for A > 1 and B > 1. Finally, we show that if A > 1
and B > 1 then the unique positive equilibrium of system (2.1) is globally
asymptotically stable. Moreover, in Chapter 3, we investigate system (3.1)
via semi-cycle analysis method, and then we assume some conditions to get
unbounded solutions for this system. We also prove that if A > 1 then every
positive solution of system (3.1) is bounded, and if A = 1 then the system can
have a two periodic solution. Then, we show that the positive equilibrium of

system (3.1) is globally asymptotically stable when A > 1.

We conclude each chapter of these two chapters by numerical examples

that supports our analytical results.
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1.2 Basic Definitions and Results

In this section, we provide basic definitions and results that we’re about
to use in the following chapters. Consider the 2(k+1)-dimensional dynamical

system of the following form:

Tpt1 = f(mna Tp—15+y Tn—ks Yns Yn—1, -+, yn—k) (110)
Yn+1 = g(xru Lp—1y s Ln—ksYnr Yn—1, -+, yn—k)

n=0,1,..
where f, g are continuously differentiable real valued functions.

Definition 1.1 (Equilibrium Point). A point (Z, ) is said to be an equilib-

rium point of system (1.10) if

T=f(Z,Z,. .. T, G, Ty -y Y) (1.11)

Definition 1.2 (Stable, Unstable, Attracting, Asymptotically Stable and
Globally Asymptotically Stable Equilibrium Point). If (Z, 7) is an equilibrium
point of (1.10), then

1. (z,y) is said to be stable if for every ¢ > 0 there exists § > 0
such that for every initial condition (x;,v;), i € {—k,—k + 1,...,0}
if || 20 (2i,5:) — (Z,9)|| < 6 implies that for all n > 0, ||(zn, yn) —
(z,9)|| < &, where |.|| is usual Euclidian norm in R?. Otherwise, (Z, %)

is called unstable.
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2. An equilibrium point (Z,y) is called attracting if there exists n > 0
such that

0
I3 ) = @) < imples fi (sn,3n) = (27) (112

3. (z,7) is called a global attractor if in 2, n = co.

4. An equilibrium point (Z,7) is called asymptotically stable if it is both
stable and attracting, and it is said to be globally asymptotically stable

if it is both stable and global attractor.

Definition 1.3 (Positive Solution). A pair of sequences of positive real num-

bers {x,, y,}22 _,. that satisfies (1.10) is a positive solution of (1.10).

Definition 1.4 (Equilibrium Solution). If a positive solution of (1.10) is a

pair of constants (z,¥), then the solution is the equilibrium solution.

Definition 1.5 (Periodic Solution). A positive solution {z,,y,}>> , of
(1.10) is said to be periodic if there exists a positive integer m, such that for

all n > —k, (xn, Yn) = (Tntms Ynem)- m is called the period of the solution.

Definition 1.6 (Eventually Periodic Solution). A positive solution
{Zn, yn}2 ;. of (1.10) is said to be eventually periodic if there exist an integer
[ > —k and a positive integer m, such that (z,11, Ynt1) = (Tntitms Yntitm)

for all n =0,1,... where m is the period of the solution.

Definition 1.7 (Bounded Solution). A positive solution {z,,y,}5> _, of
(1.10) is bounded and persists if there exist positive real numbers P;, Q1, P»

and ()5 such that P, <z, < Q1 and P, <y, < @), for n > —k.
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Definition 1.8 (Increasing and Decreasing Solution). A positive solution
{Tn, yn}o> ;. of (1.10) is said to be increasing (respectively decreasing) if
n > m, then z, > z,, and y, > y,, (respectively z,, < z,, and y,, < y,,) for

all n >1 and m > 1.

Definition 1.9 (Positive and Negative Semi-cycles). A string of consecutive
terms {x¢,..., 2.} (respectively {y,...,y-}), t > —k, and r < oo is said
to be a positive semi-cycle if x; > Z (respectively y; > ¢), i € {t,...,r},

x_1 < T (respectively y; 1 < 9), and 2,41 < T (Y41 < 7).

A string of consecutive terms {xzy,...,x,} (respectively {y;, ...,y }), t >
—k, and r < oo is said to be a negative semi-cycle if x; < T (respectively
v < 9y), 1€ {t,...,r}, xy_1 > T (respectively y;—1 > ¥), and x,.; > T

(Yrt1 > 7).

A string of sequential terms {(x¢,y:), ..., (zr,y)}, t > —k, and r < o0
is said to be a positive semi-cycle (respectively negative semi-cycle) if both
{z¢,..., 2.} and {y,...,y,} are positive semi-cycles (respectively negative

semi-cycles).

Finally, a string of sequential terms {(zs, v¢), ..., (2, y-)}, and t > —k,
r < oo is said to be a positive semi-cycle (respectively negative semi-cycle)
with respect to z,, and negative semi-cycle(respectively positive semi-cycle)
with respect to y, if {xy, ..., z,} is a positive semi-cycle (respectively negative
semi-cycle) and {y;,...,y,} is a negative semi-cycle (respectively positive

semi-cycle).

The first semi-cycle of a solution of (1.10) starts with the term (z_g, y_x),
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and it’s positive (respectively negative) if z_ > = and y_; > ¢ ( respectively

T <Zand y_j < 7).

Definition 1.10 (Nonoscillatory Solution). A function x, (respectively v,,)
is called nonoscillatory about Z (respectively g) if there exists N > —k such
that =, > = (respectively y, > ) or x, < T (respectively y, < y) for all

n > N.

We say that a solution {x,,y,}>2 _, of system (1.10) is a nonoscillatory
solution about (Z,y) if x,, is nonoscillatory about z and ¥, is nonoscillatory
about y. However, a solution {z,,y,}>> , is called oscillatory if it is not

nonoscillatory.

Definition 1.11 (Nonoscillatory Positive and Nonoscillatory negative Solu-
tions). A solution {x,,y,}22 , of system (1.10) is a nonoscillatory positive
(respectively negative) solution about (z, y) if there exists N > —k such that

x, > T and y, > ¥y (respectively x,, < Z and y,, < y) for all n > N.

Definition 1.12 (Linearized Form of (1.10)). Let (Z,y) be an equilibrium
point of system (1.10) where f, g are continuously differentiable functions at
(Z,y). The linearized system of (1.10) about the equilibrium point (Z,y) has
the form:

Xn+1 = JXn

T : : .
where X,, = (Tp, Tp_1, ooy Ty Yn, Yn—1, -, Yn—k) and J is a Jacobian matrix

of system (1.10) about the equilibrium point (z, 7).

Theorem 1.2.1. For the linearized system X,.1 = JX,, n = 0,1,... of

(1.10). If all eigenvalues of the Jacobian matriz J about (Z,y) lie inside the
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open unit disk |\ < 1, then (Z,y) is locally asymptotically stable. If one of

them has a modulus greater than one, then (Z,y) is unstable.

Definition 1.13 (Limit Superior and Limit Inferior). Let {z,} be a sequence
of real numbers. The limit superior of {z,}, denoted by limsup{z,}, is

defined by
fimsup{,} = lim [sup {a,im > 0] = inf fsup {apim > n}]
n—00 nz
The limit inferior of {x,}, denoted by liminf{x,}, is defined by

liminf{z,} = lim [inf {x,,;m > n}] = sup [inf {z,,,;m > n}]
n—oo TZZO

Definition 1.14 (Spectral Radius). Let M be any real n x n matrix, and
assume A, Ao, ..., \, are the eigenvalues of M. Then the spectral radius of

M, denoted by p(M), is given by:

p(M) = max {|;|}

1<i<n

Theorem 1.2.2. Let ||.| be any matriz norm defined on the set of all real

n x n matrices (M,,). Then for any matric M € M,,
p(M) < || A]

Definition 1.15 (Infinite Norm of a Matrix). Let M ba any matrix in M,,.

The infinite norm of M, denoted by || M ||, is given by:

1<r<n

n
1Moo = max > " |m,|
c=1



Chapter 2

Dynamics of the System

In this chapter, we introduce the following dynamical system:

n— Tp—
xn+1:A+y ka yn+1:B+ k) nzovla"'

n xn

Un—k Tp—k
$n+1:A+Z—na yn+1=B+Z—n

(2.1)

with parameters A > 0 and B > 0, the initial conditions x;,y; are arbitrary

positive numbers for i = —k, —k+1,...,0 and k € Z*. We study the dynam-

ical behavior of this system in the cases: when 0 < A <1l and 0 < A < 1,

and when A > 1 and B > 1, we also investigate the behavior of the positive

solutions of (2.1) using the semi-cycle analysis method. Finally, we give some

numerical examples that illustrate the results in this chapter.

System (2.1) has the unique positive equilibrium (z,y) = (A+1,B +1).

Since f(7,7) = (7,y) implies 7 = A+ 2 =A+ 1, andy=B+%=DB+1,

so (z,9) =(A+1,B+1).

12
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There are two cases to be considered:

Case 1: if A = B, then system (2.1) turns into the symmetrical system

(1.9)
n— Ty
Tpp = A+ AT 01,
Yn T
with parameter A > 0 and z;, y; are positive numbers for i = —k, —k+1,...,0

and k € Z*, which was studied in [10, 22].

Case 2: when A # B. This is what we're studying.

2.1 Semi-cycle Analysis

In this section, we examine the behavior of positive solutions of system

(2.1) via semi-cycle analysis method.

Theorem 2.1.1. Let {z,,y,}°2 . be a solution of system (2.1). Then, ei-
ther this solution consists of a single semi-cycle or it oscillates about the

equilibrium (Z,y) = (A+ 1, B + 1) with semi-cycles having at most k terms.

Proof. Assume {z,, y,}°°> _, is a solution of system (2.1) which has at least
two semi-cycles. Then one of these semi-cycles is positive and the other is

negative, that is, there exists ng > —k such that
Tng <1+A<x41 and yp, <14+ B < Ypot1

or

Tng > 1+A>x,01 and Yy > 1+ B > ynot1
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Case 1: if z,,, <1+ A < x,,4; and y,, < 1 + B < ¥y 41, assume that

the positive semi-cycle which starts with (z,,41, Yny+1) has k terms. Then

’rn
Tpg <14+ A< Tpgi1y s Tpgrr implies —— < 1
‘/Eno—i-k
and
YUno < 1+ B < Yngt1s- -+ Yngrk implies Hm
YUno+k
for
— 4 Yno
Tpgthp1 = A+ —— < A+1
Yno+k
and

Tn
yno+k+1:B+—O<B+1
Lro+k

so the semi-cycle has at most &k terms.

Case 2: if z,,, > 14+ A > x,,1; and y,, > 1 + B > Yy, 41, assume that

the negative semi-cycle that starts with (2,41, Yno+1) has k terms. Then

Lng

Tpo > 1+A>apg41,. .., Tpgrr implies > 1
xno—i—k
and
Yno = 14+ B > Yngity- - Yng+r implies oo
yn0+k
for
_ Yno
Tno+k+1 —A"—— >A+1
Yno+k
and
Ty
Ynoth1 = B+ ——> B +1
xn0+k
so the semi-cycle has at most k terms. Hence, the result follows. O]

Theorem 2.1.2. Let k be an odd integer and {z,,y,}°> _, be a solution of
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system (2.1) which has k — 1 sequential semi-cycles of length one. Then,

every semi-cycle after this point is of length one.

Proof. Assume {x,,y,}22 _, is a solution to system (2.1) which has k — 1
sequential semi-cycles of length one and k is odd. Then there exists ng > —k

such that either

1
Tngs Tng+2s o5 Tng+k—1 < 1+ A < Tng+1) Tng+3y +++s Tno+k

and

Yngs Yng+25 -+ Yno+-k—1 <1+B < Yno+15 Yng+35 +++» Yno+k
or

LTngy Tng+25 -+y Tng+k—1 Z 1+ A> Tng+1s Tng+3s -y Lno+k
and

Yng» Yng+25 -5 Yno+k—1 > 1+ B> Yno+1s Yno+35 -+ Yno+k

Case 1: if 2, Tngt2s oo Tnghe1 < 1+ A < Tpgi1, Trg43y o Tng+k

and
yn07 yn0+27 ceey yno—l-k)—l < 1 + B S yn0+17 yn0+37 ceey yn0+k
then
. Yno
Tpophpr = A+ —— <A+1
Yno+k
and
.flfno
Yno+k+1 = B+ <B+1
xno-l—k:

SO (Tnyiks Yngsk) is the k™ semi-cycle of length one. By induction, assume

L2, is the last term in the previous semi-cycle which we have no information about

its length, and x4 is the first term in the next semi-cycle which we have no information
about its length.



2.1 Semi-cycle Analysis 16

there are k — 1 + m semi-cycle of length one. If m is odd, then

Tngs Tng+2s -5 Tno+k+m < 1+ A < Tno+1s Tng+3s -y Tno+-k+m+1

and
Ynosr Yno+25 -+ Yno+k+m < 1+B < Yno+15 Yng+35 -+ Yng+k+m+1
then
Yno+m+1
Tng+k+m+2 = A+ — <A+1
Yno+k+m+1
and
Lno+m+1
yn0+k+1:B+—<B+1
Tno+k+m+1

so every semi-cycle is of length one. If m is even, then

Tngs Tng+25 -+ Tng+k+mt1 < 1+ A< Tng+1y Tng+3y +++s Tng+k+m

and
Yngs Yng+25 -5 Yng+k+m+1 <1+ B S Yno+15 Yng+3y -5 Yno+k+m
then
Yno+m+1
Tpgrhimyz = A+ —— > A+1
Yno+k+m+1
and
Lng+m+1
Ynorhi1 = B+ L S By
Tno+k+m+1

so every semi-cycle is of length one.

Case 2: if z,,, Tnot2, ooy Tngrk—1 > L+ A > Tpgi1, Tog+3s - Tngtk

and

Yng» Yng+25 -+ Yno+k—1 > 1+ B > Yng+1s Yng+35 -5 Yno+k
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then

Lng+h+1 — A+ s 441
Yno+k

and

T,
Ynotkt1 = B+ ——>B+1
xno-‘rk:

SO (Tngths Unotr) is the k' semi-cycle of length one. By induction, every

semi-cycle after this point is of length one. The proof is complete. n
Theorem 2.1.3. System (2.1) has no nontrivial k-periodic solutions (not

necessarily prime period k).

Proof. Assume system (2.1) has a k-periodic solution. Then, (z,_k, Yn_x) =

(T, ypn) for all n > 0, and so

n— T
Y k:A+1, and y,+1 = B+ i
Yn T

Tpy1 = A+

=B+1,n>0.

Thus, the solution (x,,y,) = (A+ 1, B + 1) is the equilibrium solution of

(2.1). The proof is complete. O

Theorem 2.1.4. All non-oscillatory solutions of system (2.1) tends to the

equilibrium (Z,5) = (A+1,B+1) as n — oc.

Proof. Assume system (2.1) has a non-oscillatory solution, say {z,, y,}5> ;.
Then by Theorem 2.1.1 the solution consists of a single semi-cycle, either this
semi-cycle is positive or negative. Assume that the solution is of a positive
semi-cycle. Then for all n > —k, (x,,y,) > (A+1,B+1), so

Yn—k

Yn

Tpp1 = A+ > A+ 1 implies Y, x> Yn
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and
Ln—k
Ly

Yni1 = B + > B+ 1 implies x,_, > x,

SO
Tk = Tp 2 Tpgg > ... 2 A+1 and ypp > Yn 2> Ypyr = ... 2 B+1, n>0

which means that {z,}, {y,} have k subsequences

{Zni b {Znks1 }s s ATnkre—1 b a0d {Yni}, {Unks1 }s s {Ynbr 1) }

each subsequence is decreasing and bounded from below, so each one of them

is convergent, so for all : = 0,1, ..., k — 1 there exist «a;, 8; such that

im @, = o and  lim yppps = 5;
n—oo n—oo

Thus,
(w0, Bo), (a1, B1), - -, (ak—1, Br—1)

is a k-periodic solution of system (2.1), which contradicts Theorem 2.1.3
unless the solution is the trivial solution. Hence, the solution converges to

the equilibrium. O

2.2 TheCase(0<A<land 0< B<1

In this section, we study the asymptotic behavior of the positive solutions

of system (2.1) when 0 < A <land 0 < B < 1.

Theorem 2.2.1. Suppose that 0 < A < 1 and 0 < B < 1. Let C =

max{A, B} and {z,,y,}°>_, be an arbitrary positive solution of (2.1). Then
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the following statements are true:
1. If k is odd and 0 < 291 < 1, 0 < yop_1 < 1, Toy, > ﬁ, Yo > ﬁ
form = %,%,...,O, then
lim x9, = 0o, lim vy, = 0o, lim x9,1 = A, lim y9,,1 = B
n—00 n—00 n—00 n—0o0
2. If kis odd and 0 < 29, < 1, 0 < Yo, < 1, Top_1 > ﬁ, Tom—1 > ﬁ

form:%,%,...,O, then

lim x9,11 = 00, lim yg,41 = 00, lim zq, = A, lim 3, = B
n—oo n—o0 n—o0

n—o0

Proof. 1. Since C' > A and B, itisclearthat 1 —C <1—Aand 1 — B.

Then
A Yk 1 _
0<z1=A+"—< A+ —<A+1-C<A+1-A=1
Yo Yo
_ 1
O<y =B+ * By <Bt1-C<B+1-B=1
i i
Y—k+1 1
Ty =A+"——>A+y 111> Ypt1>
Y1 1-C
T_ 1
Y2 :BJrﬁ > B+ T 41 > Topp1 >
T 1-C
By induction, we have
0 < Zon1,Yon-1 < 1,Ton, Yon > for n = 1,2,...

1-C
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so for [ > %
Y2i—(k+1) T2—(2k+2)
Ty =A+"—F—>> A+y21_(k+1) =A+B+4+ —"F=
Yai—1 Tol—k—2
> A+ B+ Tol—(2k+2)
_ Ty
vy = A+ Y41—(k+1) > AL Vil (o 1) = A+ B+ 41— (2k+2)
Yai—1 Tal—k—2
> A+B+I4l_(2k+2) :2A+B+M
Yal—2k-3
>2A+ B+ Yal—(3k+3) = 2A+ 2B+ Yar-(ak+1)
Yal—3k—4
> 2A + 2B + Ty (4k4a)
similarly

re1 >3A + 3B + T61—(6k-+6)

soforallr=1,2,...

Tor > (A + B) + Top—or(kt1)

if n = rl, then as r — oo,n — oo, lim w4, = oco. Similarly, we get
n—oo

lim ys, = co. Considering (2.1) and taking the limits on both sides of

n—00

each equation in the system

Yon—k Ton—k

Topt1 = A+ Yont1 = B+

2n Ton

we obtain lim x3,,1 = A and lim ys,,1 = B. Hence, we complete the
n—o0

n—o0

proof of 1.

1

2. fkisodd, 0 < x9,, < 1,0 < Yo <1, Top_1 > —=, Tom_1 > —L_ for

1-C7 1-C

m=1E 3k 0 and1—-C <1—Aand1— B since C > A and

2 2
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B, then it is clear that

_ 1
1 :A+u >A4y >y >
Yo 1-C
T_k 1
=B+—>1B > T >
n + 0 +x_p > x_ 1—C
_ 1
O<ap=A+ I AL 2 cA41-C<A+1-A=1
Y1 U1
L _k+1 1
O<y=B+—<B+—<B+1-C<B+1-B=1
I i}
Using induction implies that
0< Ton, Yo < 1,$2n_1,y2n_1 > 1—C for n = 172, .
so for [ > %
Yal—k To—2k—1
Ty =A+ >A+ynr=A+B+——>A+B+ry o1
Yai Tol—k—1
_ Tal—ok—
Ty =A+ ik, A+ Yaw = A+ B+ S A4 Bty o
Yai Tal—k-1
=2A+ B+ M >2A+ B+ Ya1—3k—2
Yql—2k—2
=2A + 2B + M > 2A + 2B + LT4l—4k—3
L4l—3k—3

similarly

Te141 >3A + 3B + 6165
soforallr=1,2,...
Torip1 > (A + B) + Zar—ork—(2r—1)

if n = rl, then as r — oco,n — oo, lim zs,,1 = oco. Similarly, we get
n—oo

lim %o, 41 = co. Considering (2.1) and taking the limits on both sides
n—oo



2.3 The Case A >1and B > 1 22

of each equation in the system

Yon—k+1 Ton—k+1
.T2n+2:A—|- n—k+ , y2n+2:B+n—+
Yon41 Ton+1
we obtain lim x5, = A and lim s, = B.
n—oo n—oo
The proof is complete. O

Remark 2.2.1. Note that when A = B = 1, then system (2.1) is of the form

e Ty
$n+1:1+u,yn+1:1+ -

n 'I’I’L

which was studied by Zhang et al. [22].

2.3 The Case A >1and B > 1

In this section, we study the boundedness and persistence of the positive
solutions of system (2.1) when A > 1 and B > 1, we also prove that if
A > 1 and B > 1 then the unique positive equilibrium of (2.1) is globally

asymptotically stable.

Lemma 2.3.1. Given vj, where j = —k,—k+1,...,k+1. Then the solution

of the higher order linear difference equation
Un42k+2 = QUp + b7 n > _ka a 7é 1
s of the form
1

b w1, 0

fori=k+2k+3,....,3k+3 and | > 0.
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Proof.

when n = —k, vpio=av_p+b

whenn =—-k+1, vpi3=0av_pi1+b

whenn =k + 1, wvspi3 =avgs +0

Moreover, when n = k 4+ 2, v3p1q4 = QUgy2 +b = a*v_p +ab+b

when n =k + 3, Vspys = avpss +b=a’v_p . +ab+b

when n = 3k 4+ 3, vUspys = aU3py3 + b= a20k+1 +ab+b

hence, fori =k +2,k+3,...,3k+3and [ >0

Viti(2k+2) = al+lvz‘—(2k+2) + b(al +at 1)

b I+1 b
= <Uz—(2k+2) + P 1> a’ + 1—a

which completes the proof. O]

Theorem 2.3.2. Suppose that A > 1 and B > 1. Then every positive
solution of system (2.1) is bounded and persists. In particular, for i =k +
2,k+3,...,3k+3 and | > 0, every positive solution of system (2.1) satisfies

(A+1)AB 1\ (A+1)AB
1— AB AB AB—1

A < Tigrt2) < (xi(2k+2) +

(B+1)AB>< 1 )”1 (B+1)AB

B , i—
< Yiri(2k+2) < (yz @)t T p AB AB -1
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Proof. Assume A > 1, B > 1 and {z,,y,}>2 _, is a positive solution of

system (2.1). Since x, > 0 and y, > 0 for all n > —k, (2.1) implies that

Tp>A>1y,>B>1 forall n>1

Now, using (2.1) and (2.2) we get that for all n > 2

n—k— 1

Ty :A_FM < A—i_—ynfkfl
Yn—1 B
Ty foe 1

Yn = B+ bl < B+ —Tp—k—1
Tp—1 A

Let {v,,w,} be the solution of the system
1 1
Upi1 = A+ =wWp_k, Wpy1 =B+ —v,_ forall n>k+1
B A
such that
V; = Ty, Wi = Yy, 2:—k,—k+1,,0,1,,k+1

now, we use induction to prove that

Tn < Uny Yn < Wp, N>k+2

Suppose that (2.6) is true for n = m > k + 2. Then, from (2.3), we get

1 1
Tmt1 < A+ SYm—k < A+ 5 Wm—k = Um+1

B B
1 1
Yms1 < B+ Zﬂvm—k < B+ va—k = Wm+1

Therefore, (2.6) is true. From (2.4) and (2.5), we have

1 1
Unt2kt2 = ZrpUn +A+1, Wpyori2=—zwp+B+1, n>—k

AB

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)
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for simplicity, let a = 455, b= A+ 1 and ¢ = B + 1. Then (2.7) becomes

Untok+2 = QUp + b, Wniopy2 = aw, +¢, n > —k

Now, using Lemma 2.3.1, forall i =k +2,k+3,...,3k+3 and [ > 0

Vitikrz) = 07T (grye) +0(al + a4 4 1)

b I+1 b
= (xi(2k+2) + m) a + 1—a

since A>1, B> 1landa= 45, b= A+1. Then fori = k+2,k+3,...,3k+3

and [ >0

QL+DAB)( 1>”1 A+ DAB o g

Vitl(2k+2) = (Iz‘—(2k+2) - 1— AB AB AB -1

Then, from (2.2), (2.6), and (2.8), for alli = k+2,k+3,...,3k+3and [ > 0

A+DAB)(1YH+(A+QAB

(
A < Tkt < (fi—(2k+2) + 1— AB AB AB —1

Similarly, we get

(B+nAB)(1yH (B+1)AB

B . i
< Yiri(2k+2) < (yz (2k+2) T 1— AB AB AB —1

The proof is complete. O
Theorem 2.3.3. If A > 1 and B > 1, then every positive solution of system

(2.1) converges to the equilibrium (z,y) = (A+1,B+1) as n — co.

Proof. Let {x,, y,}22 ;. be an arbitrary positive solution of (2.1), and let
up = limsupz,, [; =liminfz,
n—»00 n—00

ug = limsupy,, Iy =liminfy,
n—00 n—o0
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Using previous theorem, we have 0 < A < l; <wu; < +oo and 0 < B <

lo < uy < +oo. Now, system (2.1) implies that

{ l
W <A+2 uy <B4+ L >A+-2 L>B+-L
12 ll U2 Uy

then

Buy + 13 <wly < Aly + uy
Aug + Iy < ugly < Bly +uy

from (2.10) we get
BU1 + ll S Alg =+ Ug

and (2.11) implies

—Bll — U1 S —AUQ — l2

from (2.12) and (2.13) we get
BU1+Z1—BZ1—U1 SAZ2+U2_AUQ_Z2

and

(B — 1)(U1 - ll) + (A — 1)(U2 — lg) S 0

but A, B>1s0 A—1,B—1>0, also u; — l1,us — [ > 0. Hence
u; — ;=0 and us —lpb, =0
so up = Il; and ug = l5. Now use (2.9) to get
B4+1<lh=u<B+1 and A+1<li=u1 <A+1

hence

Lh=u1=A+1 and lh=uy=B+1

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)
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SO
limzx,=li=u1=A+1 and limy,=lb=u=B+1
n—oo n—o0
which complete the proof. n
Lemma 2.3.4. If A > 1 and 0 < ¢ < ﬁ where k € 77T, then
2
a—toam < L
Proof.
Dcec—t ATl 0<(k+1) Pitnd
€ —— implies E< ——
(k+1)A+1 P A+1
SO
A—1 2
1—(k+1)e>1- =
(h+1)e ATl A+l
that is,
1 A+1 2
< implies —— < A+1
—(h+De = 2 MRS T =47
and so
2 <1
(1—(k+1e)(A+1)
The proof is complete. n

Now, we'll prove that the unique positive equilibrium (z,y) = (A+1, B+

1) of system (2.1) is locally asymptotically stable using the previous lemma.

Theorem 2.3.5. If A > 1 and B > 1, then the unique positive equilibrium
(Z,y) = (A+1,B+1) of system (2.1) is locally asymptotically stable.

Proof. System (2.1) can be formulated as a system of first order recurrence
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equations as follows:

w,(ll) =Tn, wr(f) = Tp—1y--- ,w,(f“) = Tp—*k
(2.14)
UT(LI) =Yn, U,r(?) = Un—1y--- 7U'r(zk+1) = Yn—k
Let Z, = (wfll), wg), . ,w;kﬂ), 117(11), 717(12), - ,v}lkﬂ))T, Then the linearized

equation of system (2.1) associated with (2.14) about the equilibrium point
(z,y) =(A+1,B+1)is

Zn+1 =JZ,
where

1 U7(1k+1)
UJ?(@JL A 6

2 1

2, o)

k+1 k

B 0 B I

n+l — —

1 w;’kJrl)
"%(1421 B )

U1(12421 717(11)

k41 k

U£L+1 : ol

and J is the Jacobian matrix.

J(2k42)x (2k+2)

= (D, Zuit o DypnZuss Dy Zuss oo DysonZaga )
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so the Jacobian matrix will be of the following form

0 0 ...0 0 #5 0 ...0 545
1 0 00 0 0 ...0 0
0 1 ...0 0 0 0...0 0
0 0 1 0 0 0 0 0
J(2kt2)x (2k42) = » X
5 O 0 75 0 0 0 0
0 00 1 0 0 0
0 0 0 0 0 1 0 0
0 0...0 0 0 0..1 0

Let A1, g, ..., Aogr2 be the eigenvalues of J. Define D = diag(dy,ds, ..., dajyo)

be a diagonal matrix such that

dlzdk+2:1, dm:dk+1+m:1_m5, m:2,3,,]€+1

choose ¢ > 0 such that 0 < e < min{(A+/1‘)’(]1€+1), (Bﬁ)’(,iﬂ)}. Now,
d 0 0 ... 0
0 dy 0 ... 0
Dori2)x(2612) = 0 0 dy ... 0

0 0 0 ... dopss
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1 0 0 0 0 0 0 0
0 1-2 ... 0 0 0 0 ...0 0
0 0 ...01—(k+De0 0 ...0 0
0 0 0 0 1 0 0 0
0 0 ...0 0 0 1-2 ... 0 0
0 0 ...0 0 0 0 ...0 1—(k+1)

soforallm=2,3,....,k+1,

(E+1)(A-1) A+1-A+1 2

(k+1)(A+1) Ar1 A+

l—me>1—(k+1e>1-—

so for all m, 1 —me > 0, hence D is invertible. Now,

DJDé}c+2)x(2k+2) -
— d1 dl
0 0 ... 0 0 B_Jrllkorg 0 ... 0 B;Hd2k+2
L 0 ... 0 0 0 0 ... 0 0
1
k
L2 0 0 Aﬁj:ﬁ 0 0 ... 0 0
0 0 .. 0 0 fem 0 0 0
0 0 ... 0 0 0 0 ... —jjzﬁ 0

Now, we want to show that the sum of the absolute value of entries of

each row is less than one, in order to find the infinite norm of DJD™!.
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Since e > 0so 1 —me > 1— (m+ 1)e, that is, d,, > dp,11, for all m. So

dy d3 dok+2
— <1, =<1,..., <1
dy ds dok1
Fop Lo 1 d 1 1
B+1ldye B4ldyge B+1 (1—(k+1)e)(B+1)
1 1 1 1
< +
l1—(k+1)e(B+1) 1—(k+1)e(B+1)
2
= L 2.3.4
(1—(]€+1)8)(B+1) use Lemima
<1
1 diga 1 digo 1 1
For = 4
A+1 dy  A+1ldegn A+1 (1—-(k+1)e)(A+1)
1 1 1 1
< +
1—(k+1e(A+1) 1—(k+1)e(A+1)
2

= L 2.3.4
A= (bt De)(Arn) o bemmaz?

<1
Since J has the same eigenvalue as DJD~!. Then,
p(J) = max{|\;|} < [|DJD™ |

but

It e 2, %, G
1 1
1 T 0D ATD

<1

So the modulus of every eigenvalue of J is less than one. Hence, the unique
equilibrium point (z,7) = (A+1, B+ 1) of system (2.1) is locally asymptot-

ically stable. O
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Theorem 2.3.6. If A > 1 and B > 1, then the unique positive equilibrium
(Z,y) = (A+1,B+1) of system (2.1) is globally asymptotically stable.

Proof. Using Theorem 2.3.5, we conclude that the equilibrium (z,y) =
(A+1,B+1) of system (2.1) is asymptotically stable, but Theorem 2.3.3
implies that this equilibrium is a global attractor. Thus, the unique positive
equilibrium (z,y) = (A+ 1, B+ 1) of system (2.1) is globally asymptotically
stable. O

2.4 A Special Case k =2

In this section, we give useful theorems to understand the behavior of

solutions when k£ = 2 in system (2.1), so it turns into the following:

Tp—2

T = A+ L2y =B+ 2 20,1, (2.15)
y

n xn
Theorem 2.4.1. With the exception of possibly the first semi-cycle, all semi-

cycles of system (2.15) have one or two terms.

Proof. Let {zy,, y,}5> _5 be a solution of system (2.15). Assume there exists

ng > 0 such that either
Tpg—1 > A+1>2,, and yYn,—1 > B+ 1> yy,

or

Tpg—1 < A+1< 2z, and y,,—1 < B+1<y,,
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It ry-1 >A+1>2, and y,,—1 > B+1 > y,,, then either z,,41 > A+1
and y,,+1 > B + 1 so the semi cycle is of length one, or z,,1; < A+ 1 and
Ynor1 < B-+1then x, 49 = A+Zzz—: > A+1and Y, 40 = B+§Zg—: > B+1
so the semi cycle is of length two.

Ifrpy1 <A+1<z, and y,,—1 < B+1 <y,,, then either x,,,1 < A+1
and y,,+1 < B+ 1 so the semi cycle is of length one, or z,,+1 > A+ 1 and
Yno+1 > B+1 then x,, 40 = A—I—z:g—: < A+1and ypy40 = B+% <B+1

so the semi cycle is of length two. This completes the proof. O]

Theorem 2.4.2. Consider system (2.15). Every positive semi-cycle of length
two s followed by a negative semi-cycle of length one and every negative

semi-cycle of length two is followed by a positive semi-cycle of length one.

Proof. Let {z,, y,}5> _, be a solution of system (2.15). Assume there exists

no > 0 such that either

Tng—1 < A+1 < 20, Tpgr1 and Tpgpo < A+1

and
Yno—1 < B+ 1< Yng, Yngr1 and ypgr2 < B+1
or
Tpg—1 2> A+1>2,,0p11 and x40 > A+1
and
Ung—1 > B+ 1> Yng, Yngt1 and yngr2 > B+ 1
If

Tpg—1 < A+1<2p, Tpor1 and x40 < A+1
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and
ynofl < B + 1 S ynoayno+1 and yno+2 < B + 1
then
no > 1 and Yo > 1
Tno+2 Yno+2
So,
. Yno
I’n0+3 = A + > A + 1
Yno+2
and
Ty
yn0+3 — B + > B —|— 1
Lng+2

Hence, every positive semi-cycle of length two is followed by a negative semi-

cycle of length one.

If
Tpg—1 > A+1>x,, 05,01 and x40 > A+1
and
Yno—1 > B+1> Yngs Yno+1 and Yno+2 > B+1
then
no <1 and Yno <1
.Tn0+2 yno+2
So,
o Ung
Tpops =A+ — < A+1
Yno+2
and

T,
yn0+3:B+—O<B+1
x’no+2

Hence, every negative semi-cycle of length two is followed by a positive semi-

cycle of length one. O]
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Theorem 2.4.3. Suppose that there exists ng > 1 such that (zn,,Yn,) s
the single term in a positive semi-cycle of length one. Then x,,,2 € (A +

o A+ BEY) and yngse € (B + 44, B + 45,

Proof. Let {xn,yn}22 5 be a solution of system (2.15). Assume that there
exists ng > 1 such that (x,,,yn,) is the single term in a positive semi-cycle

of length one. Then

A< xpoi1, g1 <A+ 1<z, and B < Ypyt1,Yno-1 < B+ 1 < yp,

Hence,
Yng—1 B + 1
A+ < Tppa=A+ 22— <A+ —
B + 1 ot yn0+1 B
and
Tnp—1 A —I— 1
B+ ———<yp2=D08 - < B+ —+
TAL ST B T S ET T
The proof is complete. O

Theorem 2.4.4. Let {x,,yn}22 o be a solution of system (2.15). Then

Tnt3 A+1 Yn+3 B+1
o < B and == < == forn > 1.

Proof. Let {x,,y,}>> 5 be a solution of system (2.15). Then

Yn . . Tpas A 1 A 1 A+1
Tpaz = A+ implies =—+ <=+ ==—
3 Yn+2 Yn Un Yn+2 B B B
and
T, . . Ynas B 1 B 1 B+1
nas = B 1 = — <—4+—-=—
Yn+3 + o implies . . + o 1 + 1 A

The result then follows. O]
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Lemma 2.4.5. System (2.1) has no nontrivial eventually k-periodic solutions

(not necessarily prime period k).

Proof. Assume system (2.1) has a k-periodic solution with delay by [ terms.

Then, (241, Ynti) = (Tntisks Yntisk) for alln >0, and so

n Tn
xn—&—l—l—k—&—l:A‘l'M:A—f—l, andyn+l+k+1:B+—+l:B+1

Yn+i+k Ttk
Then the eventually k-periodic solution of system (2.1) with delay [ is the
equilibrium of (2.1) with delay [ or [ + 1, that is, if (z;,4) = (Ti4k, Yirk) #
(A+1, B+1), then the solution is the equilibrium of (2.1) with delay 41, and
if (x;,y1) = (x5, Yiax) = (A+ 1, B+ 1), then the solution is the equilibrium
of (2.1) with delay [. This completes the proof. ]

Theorem 2.4.6. Every solution of system (2.15) that oscillates has infinitely

many semi-cycles of length two.

Proof. On the contrary, assume that system (2.15) has a solution say
{Tn, yn 22, that oscillates and has finitely many semi-cycles of length two.

Then every semi-cycle after that point is of length one.

Assume that the last term in the last semi-cycle of length two is (2., Y, )-

Then,

Case 1: if ny = 2k for some ky € Z", and the semi-cycle containing

(g Yny) 1S a positive semi-cycle, then

Top > A+1>w9,,1 and yo, > B+ 1 > yo,.1 for allm > kg
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Now,

Topio = A+ % > A+1 foralln > ky implies yo,—1 > Yont1
n—+

but for all n,y, > B, s0 B < yani1 < yon_1 < B+ 1 for all n > ky. Also

Lon—1

Yonio = B+ > B+ 1 foralln > ky implies w9, 1 > T9,41

Ton41
but for all n, x,, > A, s0 A < w911 < w9, 1 < 14+ A for all n > ky. Moreover,

for all n > kg, Topi0 < A+ % and yon10 < B+ %. Also

Tonsg = A+ Yon < A+1 for all n > ky implies Y9, < Yonio
Yon4-2
and
Lon, . .
Yontz = B+ 2 - B+1 foraln> ko implies 9, < Topio
Ton42

moreover, for all n > ko, A+ 1 < 29, < Topio < A+ % and B+1 <1y, <
Yonte < B+ %-

Hence, the following occurs;

B+1
A<"'§$2k0+3§$€2k0+1<A+1§$2k0<$2k0+2"'<A+T

A+1
B < < yorots < Yorgr1 < B+1 < yopy < Yokot2-- < B+ ——

so there exist finite limits;

B+1

A+1< limx2n:a<A+;
n—00 B

A+1

B4+1< limyy —b< B4 2™
n—00 A

A< lim 29,41 =c< A+1
n—oo
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B < 11my2n+1:d<B+1
n—00

So system (2.15) has an eventually two periodic solution of the form

.oy (e,d), (a,b), (c,d), (a,b), ...

which contradicts the previous lemma, unless this solution is the equilibrium,

but the limits diverges from the equilibrium. Hence, the result follows.

Case 2: if ng = 2kq + 1 for some kq € Z", and the semi-cycle containing

(g Yny) 1S a positive semi-cycle, then

Ton—1 Z 1—|—A > Top and Yon—1 2 1+ B > Yon for all n Z ko

Now,
Toppo = A+ zzn_i < A+1 forallm > kg+1 implies B+1 < ygn_1 < Yons1
n+
also
Yonto = B+ Z"i < B+1 foralln > ky+1 implies A+1 < x9, 1 < Toni1
n+
also
Toniz = A+ y§2n2 > A+1 foralln > ky+ 1 implies yo, > Yonio
n+
and
Yonis = B+ ch%g > B+1 foralln > ky+ 1 implies x9, > 29,42
n+

but for all n, y, > B and z, > A, soforalln > ky+ 1, B+ 1 > ys, >

Ymiz > B and A+ 1 > @5, > Zopgs > A, also 2on43 < A+ Z5 and
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Yonrs < B+ %, which implies A + 1 < x9, 1 < Top1 < A+ % and

B+1<yu1<yYom1 < B+ % for all n > kg + 1. Hence, the following

OCCUTrS;
B+1
A<"'§$2k0+4§$2k0+2<A+1§$2k0+1<$2k0+3"'<A+T
A+1
B<"'§y2k0+4§y2k0+2<B+1§y2k0+1<y2k0+3"'<B+T

which leads to the same as case 1, that is, there exist finite limits

A< lim 29, =a< A+1

n—o0
B < limyy, =b< B+1
n—oo

B+1
A+1< lim x2n+1:c<A—|—;
n—oo B

A+1
B41< lim yopss —d < B4+ 21—
n—oo A

so system (2.15) has an eventually two periodic solution of the form

.oy (ayb), (¢, d), (a,b), (c,d), ...

which contradicts the previous lemma.

Case 3: if ny = 2k for some ky € Z", and the semi-cycle containing

(g Yny) 1S a negative semi-cycle, then
Loy < A+1< Ton+1 and Yon < B+1< Yon+1 for all n > k’o

which leads to case 2.

Case 4: if ng = 2kq + 1 for some kg € Z", and the semi-cycle containing
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(g Yny) 1S & negative semi-cycle, then
Ton—1 <A+1 < x9, and Yon—1 <B+1 < Yon for all n > k?0—|—1

which leads to case 1.

Hence, every oscillatory solution of system (2.15) has infinitely many

semi-cycles of length two. O

2.5 Numerical Examples

In this section, we give several numerical examples that represent different
cases of dynamical behavior of solutions of (2.1) using MATLAB to support

the results we had in the previous sections.

Example 2.5.1. Consider the following system of two difference equations:

tan = A+ 85y =B+ =01, (2.16)

n xn

with A = 0.1, B = 0.9, and the initial conditions z_5 = 0.5, z_4 =
101, z.3 = 0.1, .o = 102, v ;1 = 0.2, zg = 11, y.5 = 0.2, y 4 =
113, y3 = 03, y o = 103, y1 = 0.1, yo = 12.9. Then the solution
of system (2.16) is unbounded since 0 < A < 1 and 0 < B < 1 and the
initial conditions satisfy the conditions in Theorem 2.2.1, and the unique
positive equilibrium (z,y) = (1.1,1.9) is not globally asymptotically stable
(see Figure 2.1, Theorem 2.2.1).

Example 2.5.2. Consider system (2.16) with A = 3, B = 1.5, and the initial

conditions x_5 = 2.5, v_4 = 3.7, v_3 =15, v = 0.7, x_y = 0.5, xg =
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02, y5=22 y4=33 ys3=12 y =03, y_1 =0.2, yg = 0.9. Since
A > 1 and B > 1, the solution of system (2.16) is bounded and persists
(see Theorem 2.3.2), and the unique positive equilibrium (z,y) = (4,2.5) is

globally asymptotically stable (see Figure 2.2, Theorem 2.3.6).

Example 2.5.3. Consider the following system of difference equations:

tpp = A+ =B 01, (217)

n xn

with A = 2, B = 3, and the initial conditions x_4 = 0.7, z_3 = 1.5, z_5 =
1, z.1=21 20=05, y 4 =23, ys3=1, y =03, y_1 =0.2, yo =0.9.
Then the unique positive equilibrium (z, §) = (3, 4) is globally asymptotically
stable since A > 1 and B > 1 (see Theorem 2.3.6), and the solution of system
(2.17) is bounded and persists (see Figure 2.3, Theorem 2.3.2). Note that in
this example k& = 4 is even, while in Example 2.5.2, kK = 5 is odd, but in both

cases we had the same conclusion.
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Figure 2.2: The plot of the positive solution of system (2.16) with A = 3 and
B=15



Chapter

Dynamics of the System

X
$n+1:A+%, Yn+1 = A+

In this chapter, we introduce the symmetrical system:

n xn
Tpa1 = A+ Y y Yna1 = A+ , n=0,1,...
Yn—k Tn—k

k

(3.1)

with parameter A > 0, the initial conditions x;,y; are arbitrary positive

numbers for i = —k,—k+1,...,0 and k € Z". We study the semi-cycles

of the positive solutions of system (3.1), we also investigate the dynamical

behavior of the solutions of the same system when the parameter A > 1,

A=1and 0 < A < 1. Finally, we provide numerical examples to confirm

our results.

The previous system has a unique positive equilibrium (z,7) = (A+1, A+

1). Since f(Z,y) = (Z,y) implies T = A+% =A+1l,andy=A+
so (2,9) = (A+1,A+1).

S

44

—A+1,
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There are two cases to consider:

Case 1: If the initial conditions z;, y; in system (3.1) satisfy the equalities

x; =y; fori=—k,—k+1,...,0, and k € Z*, then

T

xle—i—&:/H—&:yl and zo=A+ s =A+
Y-k Tk Y—k+1 T k41

= Y2

by induction, if z; = y; for all ¢ < m, then x4 = A+ 22 = A + - =
Yma1. Hence, x, = y, for all n > —Fk, thus, system (3.1) reduces to the
difference equation

Tn
Tpy1 = A+

(3.2)

Tn—k

which was studied in [1] by Abu-Saris and Devault who showed that every
solution of equation (3.2) is bounded and persists, and that the unique posi-
tive equilibrium z = 14 A of equation (3.2) is globally asymptotically stable
if A > 1. They also improved this result for £ = 2 and 3, and studied the

semi-cycles of the nontrivial solutions of equation (3.2).

Case 2: If x; # y; for some i € {—k,—k+1,...,0},k € Z", then this is

the case we’re about to study in this chapter.

3.1 Semi-cycle Analysis

In this section, we characterize the behavior of positive solutions of system

(3.1) about the equilibrium using semi-cycle analysis method.

Theorem 3.1.1. Let {xy, yn}22 . be a solution to system (3.1). Then, either

this solution is non-oscillatory solution or it oscillates about the equilibrium
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(Z,y) = (A+1, A+ 1) with semi-cycles such that if there exists a semi-cycle

with at least k terms, then every semi-cycle after that has at least k+1 terms.

Proof. Assume {x,,y,}>° _, is a solution to system (3.1), and there exists
an integer ng > 0 such that (z,,,y,,) is the last term of a semi-cycle that

has at least k terms. Then, either

c oy Tng—k+1s - -+ Tng—1, Tng <1 +A S Tno+1

and
s Yno—ktls -1 Yno—1:Yng < 1+ A < Ynoy
or
ey Tkt s - - o3 Tng—1s Tng > L+ A > X1
and
s Yno—ktls -y Yno—1sYng = 1+ A > Yngt1
Case 1: if ... Zpgki1s oy Tng—1,Tng < L+ A < g1 and ..o Yng—kt1y - - - s

Yno—1sYny < 1 + A < Ypyt1, then

n xn
anJrQ:A—FM >A+1 and yp 0= A+ —2F > 441
Yno—k+1 Tno—k+1
n ':Cn
xn0+3:A+M >A+1 and g3 = A+ —2 > A41
Yno—k+2 Tng—k+2

ez xn
$n0+k+1:A+%>A+l and yn0+k+1:A+%+k>A+1
no o

hence, the semi-cycle starting with (,,+1, Yno,+1) has at least k£ + 1 terms.
Now, assume the semi-cycle which starts with (.11, Yn,+1) has exactly k+1

terms, then the following semi-cycle will start with (2,4 %+2, Ynesk+2) such
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that Tno+1s Lng+2y « - - s Tno+k+1 > 1+A > Tng+k+2 and Yno+1s Yno+25 - + - s Yno+k+1

>14+A> Ykt thenfori=1.3,... )k

— A Inothtiti — A Tnothii

<A+1 and Yngrhiori <A+1

Yno+1+i Lng+k4-1+i

Tng+k+2+i

from here, it’s clear that every semi-cycle after this point must have at least
k + 1 terms.
Case 2: if ..., Zpy—kt1s- s Tng—1,Tng > L+ A > 21 and .o Yng—kt1, - - -

Yno—1sYng => 1+ A > ypyy1, then forall i =2.3,... bk +1

Yno—k—1+4 Tng—k—1+i

Tno+i — A+

hence, the semi-cycle starting with (,,11, Yn,+1) has at least k£ + 1 terms.

Now, assume this semi-cycle has exactly k+1 terms, then the following semi-

cycle will start with (2,g4k+2, Yng+kr2) Such that z, 1, Tpgsos -y Togirr1 <
1+ A < Zogrkr2 a0d Yngr1s Unot2s - - - Yno+ht1 < 1+ A < Ypggry2, then for
i=1,3,... k

Yno+k+1+i Tng+k+1+i
Tpothiotri = A+ ———>A+1 and ypyqit24i = A+ ——"""—7—>A+1
Yno+1+i Tno+1+i

now, it’s clear that every semi-cycle after this point must have at least £+ 1
terms. Hence, if there exists a semi-cycle with at least k terms, then every

semi-cycle after that has at least k + 1 terms. The proof is complete. O

Theorem 3.1.2. System (3.1) has no nontrivial periodic solutions of period

k (not necessarily prime period k).

Proof. Assume system (3.1) has a k-periodic solution. Then, (z,_k, Yn_r) =
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(T, ypn) for all n > 0, and so

In =A+1, and y,y1 = A+ n
Yn—k Tk

Tpy1 = A+ =A+1, foralln >0

Thus, the solution (z,,y,) = (A + 1, A+ 1) is the equilibrium solution of
(3.1). O

Theorem 3.1.3. Any increasing solution to system (3.1) is non-oscillatory

positive (the infinite semi-cycle in the solution is a positive semi-cycle).

Proof. Assume {z,,y,}°> _, is an increasing non-oscillatory solution to sys-
tem (3.1). Then, either A+ 1 < 2y and A+1 <y, orz; < A+ 1 and

y1<A—|—1.

Case 1: if A+1 < x; and A+ 1 < gy, since the solution is increasing
then A+ 1<z <z <a3<...and A+1<y; <y <y3<...,s0 the
solution has an infinite positive semi-cycle. We also can see that as soon as

the solution enters a positive semi-cycle, it remains in this semi-cycle.

Case 2: if r1 < A+ 1 and y; < A+ 1, then we claim that the semi-cycle
containing (x1,y;) ends with (x;,1;) such that 1 < ¢ < k+ 1. If i = k + 2,

then

x
xk+2:A—|—M<A—|—1 and ypio = A+ bl

Y1 T

<A4+1

imply that
Y1 < y1 and xp <xp but E+1>1

which contradicts the fact that the solution is increasing, so any increasing

solution of system is non-oscillatory positive. Moreover, if the increasing
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solution has a negative semi-cycle, then this semi-cycle can have at most

2k 4+ 2 terms. O

Theorem 3.1.4. System (3.1) has no non-oscillatory negative solutions (has

no infinite negative semi-cycle).

Proof. On the contrary, assume system (3.1) has a non-oscillatory solu-
tion say {z,,y,}°>_, which has an infinite negative semi-cycle, and as-
sume this semi-cycle starts with (zy,yn), where N > —k. Then for all

n>N, (zn,yn) < (A+1,A+1), hence

Tpy1 = A+ Yn < A+1 implies y, < yn_k for n > max{l, N — 1}
Yn—k
and
Yni1 = A+ Tn A +1 implies =z, < x,_ for n > max{l, N — 1}
Tn—k

so for all n > max{1, N}

A< o <xpp<xp<Tpp<A+1 and

A<"'<yn+k<yn<yn—k<A+1
which means that {z,}, {y,} have k subsequences

{xnk}a {$nk+1}7 (X3} {xnk+(k71)} and {ynk’}a {ynk-l—l}a ) {ynkJr(kfl)}

each subsequence is decreasing and bounded from below, so each one of them

is convergent, so for all : = 0,1, ..., k — 1 there exist «a;, 8; such that

lim @, = o and  lim yppp = 5;
n—oo n—oo
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Thus,
(a0, Bo), (a1, 1), -, (=1, Br—1)
is a k-periodic solution of system (3.1), which contradicts Theorem 3.1.2
unless the solution is the trivial solution. Hence, the solution converges to
the equilibrium, which is a contradiction, because the solution is diverging
from the equilibrium. Hence, system (3.1) has no non-oscillatory negative

solutions. O

Theorem 3.1.5. System (3.1) has no decreasing non-oscillatory solutions.

Proof. Assume system (3.1) has a decreasing non-oscillatory solution say

{Zn, yn}>2 ;. Asin proof of Theorem 3.1.3, the solution is either of the form
o<y <a <y <A+land <y <yp <y <A+1
or there exists a positive integer ng > k + 1, such that
< T2 S X1 SAFL <z, < Tpyo1--.
and

'Syn0+2§yn0+1§A+]—§yno Syno—l"'

where the positive semi-cycle ending with (x,,, y,,) can have at most 2k + 2
terms. In both cases, the solution has an infinite negative semi-cycle which
contradicts Theorem 3.1.4. Hence, system (3.1) has no decreasing non-

oscillatory solutions. O

Theorem 3.1.6. Consider system (3.1). If k is even, then the following

statements hold:
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(a) Every semi-cycle has length at most 2k + 1.

(b) The extreme term in a semi-cycle occurs in the first k + 2 terms of the

semi-cycle.
(c) Every solution oscillates about (z,y) = (A+1,A+1).
Proof. Let {z,,yn}>2 _, be a solution of system (3.1). In the case of a neg-

ative semi-cycle, let (xy,yn) be the first term in a negative semi-cycle, and

suppose this semi-cycle is of length 2k + 1. Then
TN, TN41, - TNk < A+ 1 and yn, Yny1, - Yngoe < A+ 1

fori=1,2,...,k— 1, we have

YN+k+i S AL YN+k+i
YN-+i A+1

TNfphrit1 = A+ > YNgkti, SINCE Ynipps < A+ 1

and

T i— €T —
:A—|— N+/€+11>A+ N+k+i—1

> TUN4k+i—1
TN+4i—1 A +1

YN+k+i

which imply that
IN+k < YN+k+1 < TNk+2 < YN+E+3 < TN+k+4 < 00 < TN42k
and

UN+k < TN+k+1 < YN+k+2 < TNA+k+3 < YN+k+4 < - < YN+2k

SO

TNtk < Tnqor and  Ynyr < Yn4ok
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now, for

x
$N+2k+1=A+M>A+1 and  yypoen = A+ 28 S A 41

YN+k TN+k
and so a negative semi-cycle has at most 2k + 1 terms. The case of a positive
semi-cycle is similar to the previous case. Let (xy,yy) be the first term in a

positive semi-cycle, and suppose this semi-cycle has 2k + 1 terms. Then

TN, TN41s - Tnpor > A+ 1 and yn, Yngrs - Ungor > A+ 1

fori=1,2,...,k— 1, we have

TNiktiv1 = A+ YNk <A+ YNhei < YNikti, Since ynippi = A+ 1
YN+i A+1

and
TN i—1 TN i—1

YN+k+i —— < ———— < INfhtio1
TNti-1 A+1

which imply that
TNtk = YN+k+1 = TN4k42 = YN+k+3 = UN4k4d = 00 = TN42k

and

YN+k = TN4k41 = YN+k+2 = TN4k43 = YN+k+4 = 0 = YN+2k
now, for

x
Tngonin = A+ D < A4 1 and ynaoen = A+ 20 < 44
YN+ TN+k
and so a semi-cycle has at most 2k + 1 terms. From this proof, it is obvious

that the extreme term in a semi-cycle occurs in the first £ 4+ 2 terms. Since

every semi-cycle is of length at most 2k + 1, this implies that the solution
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oscillates about the equilibrium (z,7) = (A+1,A+1). O

3.2 The Case 0 < A <1

In this section, we study the asymptotic behavior of system (3.1) when
0 < A < 1, we also prove that when 0 < A < 1, system (3.1) can have

unbounded solution given some certain conditions.

Theorem 3.2.1. Assume that 0 < A < 1 and {x,, y,}5>_, s an arbitrary

positive solution of (3.1). Then the following statements are true:

1. If k is odd and 0 < x9y,_1 < 1, x9, > ﬁ, Yom—1 > ﬁ, 0<yom <1

form:%,%,...,O, then

lim g, = 0o, lim y9,11 = 00, lim 29,1 = A, lim 4o, = A
n—o0 n—o0 n—o0 n—oo

2. If k is odd and 0 < x9,, < 1, o1 > ﬁ, Yom > ﬁ, 0<yomo <1

form:%,%,...,O, then

lim z9,,1 = 00, lim yy, = 00, lim x5, = A, lim yo,,1 = A
n—oo n—oo n—oo n—oo

Proof. 1. If £is odd and 0 < Zo,—1 < 1, 9, > ﬁ, Yom—1 > ﬁ,
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0 < yom < 1form= %,%,...,0, then it is clear that

1
O<m:A+ﬁ1<A+——<A+1—A:1

Y—k Y-k
1
g =A+ 2 S Adag > > ——
T_ 1—-A
1
Ty =A+ % >A—i—y1>y1>
Y—k+1 1-A
0<y,=A+ o <A+ <A+1-A=1
T—k+1 T _g41

By induction, we get that for alln =1,2,...

1 1
0 <wop_1 < 1,29, > T4 Pt > m;o < Yop < 1
soforl>1
Yai—1 To1—2
$212A+—>A+y2l_1:214+ >2A+l‘2l_2
Yo1—(k+1) Tol—k—2
_ Ty
$4l:A+&>A+y4l71:2A+ T2 S 24 4 2y s
Yal—(k+1) Tal—k—2
_ T
:3A+M>3A+y4173:414+ Al > 4A 4 x4y
Yal—k-3 TAl—k—4
also

Tl > 6A + Tel—6
soforallr=1,2,...
Torp > 2rA + Tor—or

if n = rl, then as r — co,n — oo and lim x4, = co. Considering (3.1)
n—oo

and taking the limits on both sides of the equation

Tan

Yont1 = A +
Lon—k
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we get lim yo,11 = 00 since 0 < x9, < 1 for alln =0,1,.... Now,
n—oo

take the limits on both sides of the equation

Yon
Yon—k

Tony1 = A+

we obtain lim x5,.1 = A since 0 < y, < 1 for all n. Similarly, take
n—oo

the limits on both sides of the equation

Ton+1
Yon+2 = A+ —
Ton—k+1

to get lim y9,,1 = A. Hence, we complete the proof of 1.
n—oo

2. If kis odd and 0 < @9, < 1, Top_1 > ﬁ, Yom > ﬁ, 0<yomo <1

_ 1-k 3—k
for m = 57, 25%,...,0, then
_ Yo 1
Ty =A+-—>A+y >y >

Y—k 1—-A
i 1

O<y=A+ — <A+ —<<A+1-A=1
T_k T_f

0<xy=A+ h <A+ <A+1-A=1
Y—k+1 Y—k+1

I 1

T _k+1 1—-A

By induction, we have for alln =1,2,...

1
0< Top < l,Ign_l > ——, Yop >

0<yop_1 <1
1- A Yon—1

1
1-A
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soforl>1
Yai Tal—1
Top1 = A+ > A+ yy =2A+ > 2A + 19
Yoi—k Toj_k_1
Ty
Typr = A+ Yl >Atyy =24+ S04 1oy,
Yal—k Tal—k—1
_ Ty
:3A+M>3A+y4l,22414+ A3 >4A—|—Zl§'4l,3
Ya1—k—2 Tyl—k-3

similarly, zg 1 > 6A 4+ xg_5. So forall r =1,2,...
Topip1 > 2rA + To_(20-1)

if n = rl, then as r — oo,n — oo and lim x5,,; = oo. Considering
n—oo

(3.1) and taking the limits on both sides of the equation

Lon+1
Yoo = A+ —"—
Ton—k+1
we get lim yo, = oo since 0 < x9, 11 < 1 foralln =0,1,.... Now,
n—0o0

take the limits on both sides of the equation

Ton
Yont1 = A+

Ton—k
we obtain lim 99,11 = A since 0 < x5, < 1 for all n. Similarly, take
n—oo

the limits on both sides of the equation

Yon+1

Topto = A+
Yon—k+1

to get lim w9, = A, which completes the proof.

n—0o0
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3.3 The Case A =1

In this section, we study the boundedness , persistence and periodicity of

positive solutions of system (3.1) when A = 1.

Theorem 3.3.1. If A = 1, then every positive solution of system (3.1) is

bounded and persists.

Proof. Assume A = 1 and {z,, y,}°> _, is a positive solution of system (3.1).

Then z,,y, > A = 1 for all n > 0, so we can choose a real number L to

be close enough to 1 such that 1 < L < % and z;,y; € [L, %] for all

i=1,...,k+ 1. Now from (3.1), zp12 = 1 + % and ypi0 = 1+ xkjl, then

x

L L/(L-1) L—-1+1 L
+L/(L—1) S Thy2, Yep2 S 1+ I 71 11

by induction, z;,y; € [L, %] for all ¢ = 1,2, .... The proof is complete. []

Theorem 3.3.2. Suppose A =1, {z,,yn}>>_, is a positive solution of sys-
tem (3.1). Then

liminf z,, = liminf g,
n—0o0 n—oo

limsup x,, = limsupy,

n—oo n—o0

Proof. Let
[y = liminf x,, [y =liminfy,
n—o0 n—oo

up = limsupz,, us = limsupy,
n—oo n—oo
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Clearly, 1 < l; < wuj and 1 < ly < uy. Now, since z,.1 = 1+ yy’jk, Ynil =

1+ x’:’ik, I <x; <wupand Iy <y; < uy forall 7, so
lg ll U2 Uy
L>21+—, L>14+—, <14+ -—, w<l+—
Us Uy ly l
SO
liug > Iy +ug, louy > 11 +wy,  uily <lo+ug, uply <+
SO
lauy <y +up < lug <y +up < louy
SO
lg + Uy = l2u1 (33)
ll’LLg = l2u1 (34)
ll +u = l2u1 (35)
from (3.4), we can get
Iy U1
2 3.6
LT n (3.6)
divide (3.5) by Iy to get
ll Uq
I 3.7
1, Uy (3.7)
substitute (3.6) in (3.7) to get
(751 (51
— - — ul
U9 12
which implies
1 1 U2

— +—=1, and l, =
u2+l2 » And 'LL2—1

(3.8)
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substitute (3.8) in (3.3) to get

Uz U2

UQ+UQ—1 u2—1

which implies

IR
UQ—].—UQ—]_

so, we can get
U2 Uy

U9 — 1 - U — 1
Hence, u; = ug, and from (3.4) we can get [; = l. The result then follows.

]

Theorem 3.3.3. Suppose A = 1.

1. If k is odd, then every positive solution of system (3.1) with prime

period two takes the form

a a a a

"7(a’7a_1)7(a_17a)7(a7a_1)7(m7a>?”' with 1<CL#2

2. If k is even, there do not exist positive nontrivial solution of system

(5.1) with prime period two.

Proof. 1. Let {zp,yn}o> _, be a positive two periodic solution. Then there
exist a,b,c,d € RT, all are greater than 1, such that for all n > 0,
Ton—k = Ay Yopt = b, Topy1k = C, Your1—k = d, that is, the solution
is ..., (a,b),(c,d),(a,b),(c,d),...

Case 1: if a = ¢, then 29, = Topi1-k, SO T} = T_gy1 = T_p1o =
T_gi3 = ..., so b = d, which implies that the solution is not two

periodic which is not the case.



3.3 The Case A =1 60

Case 2: let a # ¢. Then b # d, so using the previous theorem, we can
get

min{a, c} = liminf z,, = liminf y,, = min{b, d}
n—oo n—oo

and

max{a, c} = limsup z,, = limsup y,, = max{b, d}
n—oo n—0o0

hence, we have the following cases:

(a) if a < cand b < d, then a = b and ¢ = d, then the solution is of

the form: ..., (a,a), (¢, ¢), (a,a),(c,c),...

(b) if a < ¢ and b > d, then a = d and ¢ = b, then the solution is of

the form: ... (a,c),(c,a),(a,c),(c,a),...
(c) if @ > c and b < d, then we get case (b).

(d) if a > c and b > d, then we get case (a).

In (a), Topnk = Ay Yon—k = Gy Topyi—k = C, Yonp1—k = €. But xp =
1+ 2 soa=1+ <, which implies a®> = ¢+ a, also 15 = 1 + —4— so
Y-k’ a’ ’ Y—kt1’
¢ =1+ ¢, which implies ¢ = ¢+ a and hence, a® = ¢ but a # ¢, so

¢ = —a. Which is not the case, because we only consider the positive

solutions.

In (b), Zon—i = a, Yon—t = € Topp1-k = C, Yony1-k = a. But z; =

a

1+ % soa=1+ 2, which implies ac = ¢ + a, and hence, ¢ = 4.
Y-k c a—1

Then the solution is ..., (a, -%5), (5%, a), (a, %), (5%, a), . ...

2. Let {z,,yn}°_, be a positive two periodic solution and k is even, if

Top—k = Ay Yon—k = b, Ton+1—k = C; Yont+1—-k = d, then
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Case 1: if a = ¢, then b = d so the solution is not two periodic which

is not the case.

Case 2: if a # ¢, then b # d, so

min{a, c} = liminf z,, = liminf y,, = min{b, d}
n— oo n—oo

and

max{a, c} = limsup z,, = lim sup y,, = max{b, d}

The same as before:
(a) if @ < cand b < d, then a = b and ¢ = d, then the solution is of
the form: ..., (a,a),(c,¢), (a,a),(c,c), ...

(b) if a < ¢ and b > d, then a = d and ¢ = b, then the solution is of

the form: ..., (a,c), (¢, a),(a,c),(c,a),...
(c) if @ > c and b < d, then we get case (b).

(d) if a > c and b > d, then we get case (a).

In (3)7 Top—k = A, Yop—k = Ay Toppi—k = C, Yopy1—k = C. But z; =

1+£_0k’ so ¢ = 142, which implies ¢ = 2, also xy = 14+—— soa = 1+,

Yy
Y—kt1’

which implies @ = 2. Then the solution is ...,(2,2),(2,2),..., which
is not two periodic .

In (b), Ton—k = @, Yon—k = €, Tont1-k = C, Yont1—k = a. But x; =

Y1
Y—kt1’

1+ i—ok, so a = 1+ ¢, which implies a = 2, also o = 1 + SO
c= 1+§, which implies ¢ = 2. Then the solution is . .., (2,2),(2,2),...,
which is not two periodic. So when k is even, there is no nontrivial two

periodic solution.
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3.4 The Case A > 1

In this section, we study the boundedness and persistence of the positive
solutions of system (3.1) when A > 1, and we show that the unique positive

equilibrium is a globally asymptotically stable.

Lemma 3.4.1. Given vy, vgy1. Then the solution of the second order linear

difference equation
Upio =av, +b, n>k, a#1

18

b . b
Uptor = | Uk + a +
a—1 1—a

b . b
Vgg2i41 = | Vg1 + —— ) a +
a—1 1—a

foralll > 0.
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Proof.
whenn =k, wviio =avy+b
whenn =k +1, vpi3=avks1 +0
when n =k + 2, Vpia = aUpyo +b=a’v, +ab+0b
whenn =k + 3, vpi5 =avgis+b= aQUkH +ab+b
when n = k 4 4, vk+6:avk+4+b:a?’vk+a2b+ab+b
whenn =k +5, Vpi7 = avgis +b= a3vk+1 +a’b+ab+b
hence, for all [ > 0
b b
V421 = alvk + b(al_l +a 7?4+ 1) = (v + a +
a—1 1—a
l -1 -2 b ! b
Ukgoip1 = QU1 +0(a +a 7“4+ 1) =1 + —— | a’ +
a—1 1—a
this completes the proof. O]

Theorem 3.4.2. Suppose A > 1.

Then every positive solution of system

(8.1) is bounded and persists. In fact, for all 1 > 0,

A2 1\* 42
A<.Tk+21§ (l’k—l- l—A) (Z) +A—1
and
A? 1\% A2
A < Tpyou < ($k+1 + m) (Z) 11
simalarly,
A2 1\* A2
< —
A <Berar < (y” 1—A) (A) a1
and
A2 1\* 42
A < Yrgap < (iUkH + 1 —A) (Z) + 1-1
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Proof. Assume A > 1 and {z,,y,}>2 _, is a positive solution of system (3.1).

Since x, > 0 and y,, > 0 for all n > —k, (3.1) implies that

Tp,Yn > A forall n>1 (3.9)
use (3.1) and (3.9) to get that for all n > k + 2

Yn—1
Yn—k—1

1 1
<A+ TYn—1s Yn <A+ —x, 1 (3.10)

T, =A+ I

Let {v,,w,} be the solution of the following system

1 1
v, = A+ an_l, w, = A+ Zvn_l forall n>k+2 (3.11)

such that

V; = Iy, Wi = Y, 221,2,,k—|—1 (312)

now, we use induction to prove that
Tp < Upy Yp < Wp, n>k+2 (3.13)
Suppose that (3.13) is true for n = m > k + 2. Then, from (3.10), we get

1 1
Tl < A4+ —Ym < A+ =Wy, = Uiy
A A
(3.14)
1 1
Yms1 < A+ me <A+ va = Wm+1
Therefore, (3.13) is true. From (3.11) and (3.12), we have
1 1
Un_,_g:PUn—I—A—Fl, wn+gzﬁwn+A+1, n>k (3.15)

for simplicity, let @ = 4z and b= A + 1. Then (3.15) becomes
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Upio = U, + b, Wy =aw, +b, n>Fk

Now, using Lemma 3.4.1, for all [ > 0

b
Vktol = alxk + b(al_1 +a? 4+ 1) = (xk + a—) a +

b b
Vktarp1 = AT +0(a T ! TP 1) = <$k+1 + —) a' +

since A > 1, and a = ﬁ, b=A+1. Then forall >0
A2 1\* A2
Vg2t = (9Ek + m) (Z) + A1
A2 1\* A2
Uk42141 = (l’kﬂ + m) (Z) + A1
Then, from (3.9), (3.13), and (3.16), for all [ >0

A? 1\* 42
A<$k+2z§<$k+1_A) (Z) +A—1

A2 1\* 42
A < Tpqo1 < <Ik+1+ 1 —A) (Z) + 1-1

and

Similarly, we get
A2 1\ A
A < —
<Ykt = (yk+1_A) (A) +A—1

A2 1\ 2 22
A <Yptas < <$k+1 + m) (Z) + Y-

and

The proof is complete.

(3.16)

]

Theorem 3.4.3. Suppose A > 1. Then every positive solution of system

(3.1) converges to the equilibrium (A+1,A+1) as n — oo.
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Proof. Let

[y = liminf x,, [y =liminfy,
n—o0 n—oo
up = limsupz,, us = limsupy,

n—oo n—00

Clearly, 1 < [ < wu; and 1 < [ < uy. Now, since x,,41 = 1 + - and

Yn—k
Yny1 =14 72 s0
[ [
h>A+2 b>A+-L w<A+2 <A+
U9 Uy l2 ll
SO
llu2 Z l2 + A’UQ (317)
lgul Z ll + AUI (318)
Ullg S Alg + U (319)
u2l1 S All -+ Uy (320)
SO
Au1 + ll S l2u1 S Alg + Uuo (321)
and
AUQ + l2 S l1u2 S All + Uy (322)

from (3.21) and (3.22) we get
Auy + 1 + Aug + 1o < Aly +ug + Aly + 4
which implies

Aul—{—ll—All—UlSAZQ—FUQ—AUQ—ZQ
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SO

A(ul—ll—12+u2)+(l1—u1—u2+l2)§0

SO

(A=1D)(ug —li+uy—13) <0
but A >1so A—1> 0, hence
u — i +uy—15 <0
but both u; — I3, us — Iy > 0, so uy — Il + us — Iy > 0. Hence,
U —li+us—l=01if uy—10, =0 and us—Ily =0 iff vy =1 and uy =1y
Now back to (3.17), (3.18), (3.19), (3.20).
from (3.17) l1ly > Aly + 13, so I; > A+1

and

from (319) lgll S Alg + lQ, SO ll S A +1
SO

Lh=A+1, so limzx, =1 =u1=A+1

n—o0

Similarly, use (3.18) and (3.20) to get
lhb=A+1, so limy,=l=u=A+1
n—oo
which completes the proof. O]

Theorem 3.4.4. If A > 1, then the unique positive equilibrium (T,y) =
(A+1,A+ 1) of system (3.1) is locally asymptotically stable.
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Proof. System (3.1) can be formulated as the system of first order recur-
rence equations (2.14). If Z, = (wg), w? w0 B ,v,(fﬂ))T,
then the linearized equation of system (3.1) associated with (2.14) about the

equilibrium point (z,9) = (A+ 1, A+ 1) is

Zn+1 = JZn
where
1 o)
w’gz—i)—l A+ G D)
2 1
o2, ol
k41 k
e uff
ZnJrl = =
1) wiH
Ut At g
Ugl 07(11)
k+1 k
U’EL—H ) Uv(z )

and the Jacobian matrix J is of the form:

J(2k12) % (2k+2)

= (D, Zuis o DypinZuss Dy Zuss oo DysonZaga)
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00 ...0 0 45 0 ...0 54
1 0 00 0 0..0 0
0 1 00 0 0..0

0 0 1 0 0 0 0 0
a7 O 0 &% 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0o 0 0 1 0 0
0 0 00 0 0 1 0

Let A, Ag,..., Aopyo be the eigenvalues of J. Define D =

diag(dy,ds, ..., dagy2) be a diagonal matrix such that

dlzdk+2:1, dm:dk+1+m:1—m5, m:2,3,,k+1

choose € > 0 such that 0 < e < (AJFAI)%. Now,
d 0 0 ... 0
0 dy O 0
Dok 2)x(2k12) = 0 0 d3 ... O
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1 0 0 0 0 0 0 0
0 1-2 ... 0 0 0 0 ...0 0
0 0 0 1—(k+1)e 0 0 0 0
0 0 0 0 1 0 0 0
0 0 ...0 0 0 1—-2 ... 0 0
0 0 ...0 0 0 0 ...0 1—(k+1)e

soforallm=2,3,....,k+1,

(E+1)(A-1) A+1-A+1 2

1-— >1—(k+1l)e>1-— = >0
me = (k+1)e (k+1)(A+1) A+1 A+1
so for all m, 1 —me > 0, hence D is invertible. Now,
DJD™ ' =
1 dy -1 d
0 0 ... 0 0 Tt 0 0 gt
L0 ... 0 0 0O 0 ... 0 0
1
0 0 s 0 0 0 0
k
d —1 d
aaas 0 0 e 0O 0 ... 0 0
0 0 ... 0 0 j’f 0 ... 0 0
0 0 ... 0 0 0 0 ... Gk 0

dokt1

Now, we want to show that the sum of the absolute value of entries of

each row is less than one, in order to find the infinite norm of DJD~!. Since
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e>0s01—me>1—(m+ 1)e, that is, d,, > d,,41, for all m. So

dy d3 dog42
— <1, =<1, ..., <1
dy ds dag+1
1 digo 1 digo 1 1
F —
T AT d At ldn A4l U—(hrD)9)A+D
1 1 1 1
< +
1—(k+1e(A+1) 1—(k+1)e(A+1)
2
= L 2.3.4
A=t D)IALD) use Lemma 2.3
<1

Since J has the same eigenvalue as DJD~!. Then,
p(J) = max{|\;|} < [|DJD™|
but

-1 _ do d d 1 1
IDID oo = max{ 2 ds o 0y A<

So the modulus of every eigenvalue of J is less than one. Hence, the unique
equilibrium point (z,7) = (A+1, A+ 1) of system (3.1) is locally asymptot-
ically stable. [

Theorem 3.4.5. If A > 1, then the unique positive equilibrium (T,y) =
(A+1,A+ 1) of system (3.1) is globally asymptotically stable.

Proof. Using previous theorem,the unique positive equilibrium (z,7) =
(A4 1,A+1) of system (3.1) is locally asymptotically stable. And by The-
orem(2.3.2) the equilibrium point is global attractor, so the unique positive

equilibrium (z,y) = (A+ 1, A+ 1) of system (3.1) is globally asymptotically
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stable. 0

Theorem 3.4.6. If A > 1, system (3.1) has no non-oscillatory positive

solutions (has no infinite positive semi-cycle).

Proof. On the contrary, assume system (3.1) has a non-oscillatory solu-
tion say {zn,yn}o>_, which has an infinite positive semi-cycle, and as-
sume this semi-cycle starts with (xy,yy), where N > —k. Then for all

>N, (2a,90) > (A+ 1, A+ 1), hence

Tpi1 = A+ Yn > A+ 1 implies y, >y, for n >N —1
YUn—k
and
Yni1 = A+ n >A+1 implies z, >z, for n >N —1
Tn—k

using Theorem 3.4.2, there exist two real numbers (), P such that for all
n>k+2 x, <Q,y, < P. Sofor all n > max{N — 1,2k + 2} (since we

need n — k >k + 2) we get

A"_lgxn—kéxnéxn—i-kSSQ and
A+1<yp s <Y <Ypyx <--- <P

similarly, in case A = 1, using Theorem 3.3.1, the solution is also bounded

for all n > —k which means that {x,}, {y,} have k subsequences

{xnk}7 {xnk+1}7 “eey {Ink+(k—1)} and {ynk}a {ynk-{-l}: ceey {ynk—i—(k—l)}

each subsequence is increasing and bounded from above, so each one of them
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is convergent, so for all = 0,1, ..., k — 1 there exist v;, d; such that
lim zppqs =5 and  lim Y = 0;
n—oo n—oo

Thus,

(70, 50), (71, 51)7 sy (%—1, 5k—1)

is a k-periodic solution of system (3.1), which contradicts Theorem 3.1.2
unless the solution is the trivial solution. Hence, the solution converges to
the equilibrium, which is a contradiction, because the solution is diverging
from the equilibrium. Hence, system (3.1) has no non-oscillatory positive

solutions when A > 1. O]

Corollary 3.4.7. If A > 1, then every solution {z,,y,}s>_, to system (3.1)
oscillates about the equilibrium (Z,y) = (A+ 1, A+ 1) with semi-cycles such
that if there exists a semi-cycle with at least k terms, then every semi-cycle

after that has at least k 4+ 1 terms.

Proof. Using Theorem 3.4.6, system (3.1) has no non-oscillatory positive
solutions since A > 1, and Theorem 3.1.4 implies that system (3.1) has no
non-oscillatory negative solutions. Thus, by Theorem 3.1.1 every solution of
system (3.1) oscillates about the equilibrium (z,y) = (A + 1, A 4+ 1) with
semi-cycles such that if there exists a semi-cycle with at least k terms, then

every semi-cycle after that has at least k£ + 1 terms. . O
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3.5 Numerical Examples

In this section, we provide numerical examples done using MATLAB, to
illustrate the results we have in chapter 3. Each example represent a different

type of the dynamical behavior of solutions of (3.1).
Example 3.5.1. Consider the following system of two difference equations:

Top = A+ L g = A+ n=0,1,... (3.23)

Yn—5 Tn—5

with A = 0.5, and the initial conditions z_5 = 2.5, z_4, = 0.7, x_3 =
3, 9 =03, x_1 =35, 20 =02, y5=02, y_4 =33, y3=02, y o=
2.3, y_1 = 0.7, yo = 3.9. Then the solution of system (3.23) is unbounded
because 0 < A < 1 (see Theorem 3.2.1), and the unique positive equilibrium

(z,9) = (1.5,1.5) is not globally asymptotically stable (see Figure 3.1).

500000

400000 - b

300000 1

200000 b

The value of the iteration (xn and yn)

100000 [ 1

0 10 20 30 40 50
lteration number (n)

Figure 3.1: The plot of the positive solution of system (3.23) with A = 0.5
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Example 3.5.2. Consider system (3.23) with A = 2, and the initial condi-
tions x5 =15, v 4y =03, v 3=2, v =03, 1 =25, o =4, y5 =
02, y4=3, ys3=12 yo=21, y1 =18, yo = 0.9. Since A > 1,
the solution of system (3.23) is bounded and persists (see Theorem 3.4.2),
and the unique positive equilibrium (z,y) = (3, 3) is globally asymptotically
stable (see Figure 3.2, Theorem 3.4.5).

80

@
o
T

~
o

The value of the iteration (xn and yn)

o
o
T

1 1 1 1 1 1
0 20 40 60 80 100 120 140
lteration number (n)

Figure 3.2: The plot of the positive solution of system (3.23) with A = 2

Example 3.5.3. Consider the following system of difference equations:

Tpp1 = A+ yn, Yni1 = A+ xn, n=20,1,... (3.24)

Yn—6 Tn—6

with A = 3, and the initial conditions xz_¢ = 3.6, z_5 = 0.1, z_4 =
1.1, 2. 3=43, x o =05, 2.1 =02, 2o =11, y =2, y5=09, y 4 =

2.2, y.3 =15, yo=0.7 y1 =39, yo = 3. Then the unique positive
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equilibrium (z,y) = (4,4) is globally asymptotically stable since A > 1 (see
Theorem 3.4.5), and the solution of system (3.24) is bounded and persists
(see Figure 3.3, Theorem 3.4.2). Note that in this example k = 6 is even,
while in Example 3.5.2, £k = 5 is odd, but in both cases we had the same

conclusion

80

@
o
T

i
o
T

The value of the iteration (xn and yn)

o
=}
T

L

0 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140
Iteration number (n)

Figure 3.3: The plot of the positive solution of system (3.24) with A =3

Example 3.5.4. Consider system (3.23) with A = 1, and the initial condi-
tionsx_5 =3, v 4 =11, v 3 =22, 2 o=15, 2.1=3, 2o =15, y 5 =
05, y4=3,ys3=15yo.=4 y1=1, yp=3. Since A=1and k=51is
an odd integer, then the solution of system (3.23) is two periodic solution (see
Theorem 3.3.3), and the solution is also bounded (see Theorem 3.3.1), and
the unique positive equilibrium (z,y) = (2,2) is not globally asymptotically
stable (see Figure 3.4).
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Figure 3.4: The plot of the positive solution of system (3.23) with A =1

Example 3.5.5. Consider the following system of difference equations:

T = A4 oy = A+ n=0,1,... (3.25)

Yn—4a Tn—a

with A = 1, and the initial conditions x_4 =3, x_3=1.5, .o =3, z_; =
1.5, g =3, y4 =15, y3 =3, yo =15 y1 =3, yo = 1.5. Since
A =1 and k =4 is an even integer, Then the only two periodic solution of
(3.25) is the equilibrium solution (see Theorem 3.3.3), and the unique positive

equilibrium (Z,g) = (2, 2) is globally asymptotically stable (see Figure 3.5).



n

n

The value of the iteration (x and y )

0 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140
lteration number (n)

Figure 3.5: The plot of the positive solution of system (3.25) with A =1

78



Conclusion

In this research, we solved an open problem proposed in [10] by Gumus
(2018). We expanded the work on system (1.9) to a system with different
parameters and investigated its dynamical behavior. We also introduced the
symmetrical system of two rational difference equations (3.1) and studied the

global behavior of its positive solutions.
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Future Work

Our research can be expanded into more complicated related systems.
The study of systems (3.1), (1.1) and (1.6) can be extended to systems with
distinct parameters. Whereas system (2.1) can be extended to a system with
different parameters and powers. Now, we will give some open problems that

can be investigated next.
Open Problem 1. Investigate the dynamical behavior of the system

n xn
Tni1 = A+ 4 y Yni1 = B+ , n=0,1,...
Yn—k Ln—k

with parameters A, B > 0, the initial conditions x;, y; are arbitrary positive

numbers for ¢ = —k,—k+1,...,0 and k € Z*.

Open Problem 2. Investigate the dynamical behavior of the system of two

difference equations

n xn
Tni1 = A+ Y y Ynt1 = B+ , n=0,1,...
Tn—k Yn—k

where the parameters A, B are positive, the initial conditions z;,y; € (0, 00)

fori=—k, —k+1,..,0 and k € Z+.
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Open Problem 3. Investigate the dynamical behavior of the system

n— Tp—
xn-‘rl:A—i_yxk? yn+1:B+ yk7 nzovla"'

with parameters A, B > 0, the initial conditions x;,y; are arbitrary positive

numbers for ¢ = —k, -k +1,...,0 and k € Z*.

Open Problem 4. Investigate the dynamical behavior of the system of two

nonlinear difference equations

Y Ty
xn-‘rl:A—i_Z_;y yn+1:B+ ;;7 nzovla"'

where the parameters A, B > 0, the parameters p,q are nonnegative, the
initial conditions x;, y; are arbitrary positive numbers for i = —k, —k+1,...,0

and k € ZT.
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