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Abstract

In this research, we investigate semi-cycles, boundedness, per-

sistence of positive solutions, and global asymptotic stability of

the unique positive equilibrium of two different systems of two

nonlinear difference equations. The first system is:

xn+1 = A+
yn−k
yn

, yn+1 = B +
xn−k
xn

, n = 0, 1, . . . .

where A,B are positive real numbers, the initial conditions

xi, yi ∈ (0,∞) for i = −k,−k + 1, ..., 0 and k ∈ Z+. The second

system is:

xn+1 = A+
yn
yn−k

, yn+1 = A+
xn
xn−k

, n = 0, 1, . . . .

with parameter A ∈ (0,∞), and xi, yi are arbitrary positive

numbers for i = −k,−k + 1, ..., 0 and k ∈ Z+.
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Chapter 1
Preliminaries

1.1 Introduction

Discrete dynamical systems and difference equations have captured the

interest of the researchers in the last few years, especially these equa-

tions which arise in mathematical models that describe problems in physics,

biology, economics and engineering. Studying the dynamical behavior of dif-

ference equations and systems is not only of interest in their own right, but

the results can help to develop the theory of difference equations. Difference

equations might sometimes have simple forms, however, it is crucially hard

to fully understand the behavior of their solutions.

Recently, nonlinear difference equations and systems are of wide interest

[1–6,9–25]. Particularly, in 1998, Papaschinopoulos and Schinas [16] studied

the oscillatory behavior, periodicity and boundedness of the solutions of the

1



1.1 Introduction 2

following system of difference equations:

xn+1 = A+
yn
xn−p

, yn+1 = A+
xn
yn−q

, n = 0, 1, . . . (1.1)

where A > 0 and p, q are positive integers. They proved that any positive

solution of (1.1) oscillates about the equilibrium (x̄, ȳ) = (A+ 1, A+ 1), and

if A > 0 and at least one of p, q is an odd number (respectively, A > 1 and

p, q are both even numbers), then any positive solution of (1.1) is bounded.

Moreover, they proved that if A > 1, then the unique positive equilibrium

of system (1.1) is globally asymptotically stable. Moreover, they considered

system (1.1) in the case that A = 0 and p = q = 1, and found that every

solution of system (1.1) in this case is periodic of period 6.

After that, in 2000, Papaschinopoulos and Schinas [17] investigated the

system:

xn+1 = A+
xn−1

yn
, yn+1 = A+

yn−1

xn
, n = 0, 1, . . . (1.2)

where A is a positive constant and x−1, x0, y−1, y0 are positive numbers. They

proved that the positive solution of system (1.2) oscillates about the equilib-

rium (x̄, ȳ) = (A + 1, A + 1). Moreover, they proved that system (1.2) has

periodic solutions of period two if A = 1, and that any positive solution of

system (1.2) tends to the equilibrium as n→∞. Furthermore, they showed

that if 0 < A < 1, then system (1.2) has unbounded solutions. If A = 1,

then every positive solution of (1.2) tends to a periodic solution of period

two, and if A > 1 then the positive equilibrium (x̄, ȳ) = (A + 1, A + 1) of

(1.2) is globally asymptotically stable.

Whereas Papaschinopoulos and Papadopoulos [15] studied, in 2002, the
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existence of positive solutions of the equation:

xn+1 = A+
xn
xn−m

, n = 0, 1, . . . (1.3)

they found that there exist bounded and unbounded solutions of (1.3). They

also introduced the following system of difference equations:

xn+1 = A+
xn
yn−m

, yn+1 = B +
yn
xn−m

, n = 0, 1, . . . (1.4)

where m ∈ {1, 2, . . . }, and x−m, x−m+1, . . . , x0, y−m, y−m+1, . . . , y0 are posi-

tive constants and A,B are positive real numbers. They proved that if A > 1

and B > 1, then the solution of (1.4) is bounded and persists, and there will

be a unique positive equilibrium (x̄, ȳ) of system (1.4), and that every pos-

itive solution of (1.4) tends to that unique positive equilibrium as n → ∞.

They could also found unbounded solutions when 0 < A < 1 or 0 < B < 1.

In 2004, Camouzis and Papaschinopoulos [2] studied the boundedness

and persistence of the positive solutions of the following system:

xn+1 = 1 +
xn
yn−m

, yn+1 = 1 +
yn
xn−m

, n = 0, 1, . . . (1.5)

where xi, yi are positive numbers for i = −m,−m + 1, . . . , 0 and m is a

positive integer. Furthermore, they proved that (1.5) has an infinite number

of positive equilibrium solutions and that every positive solution converges

to a positive equilibrium solution (x̄, ȳ) = (2, 2) as n→∞.

In 2007, Y. Zhang et al. [25] introduced the system:

xn+1 = A+
yn−m
xn

, yn+1 = A+
xn−m
yn

, n = 0, 1, . . . (1.6)

where the parameter A and the initial conditions xi, yi are positive real num-
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bers for i = −m,−m + 1, . . . , 0, and m is a positive integer. Zhang et al.

proved that the unique positive equilibrium of (1.6) is globally asymptotically

stable for A > 1, and the positive solution of system (1.6) is bounded and

persists when A ≥ 1, they also found unbounded solutions of system (1.6)

when 0 < A < 1, and showed that for A = 1, if m is odd then any positive

solution of (1.6) with prime period two is of the form

. . . , (a, a), (
a

a− 1
,

a

a− 1
), (a, a), (

a

a− 1
,

a

a− 1
), . . .

where 1 < a 6= 2, however, if m is even then any positive solution of (1.6)

with prime period two takes the form

. . . , (a,
a

a− 1
), (

a

a− 1
, a), (a,

a

a− 1
), (

a

a− 1
, a), . . .

where 1 < a 6= 2.

While Q. Zhang, Yang, and Liu [24] in 2013 investigated the boundedness,

persistence of positive solutions and global asymptotic stability of the positive

equilibrium of the system:

xn+1 = A+
xn−m
yn

, yn+1 = B +
yn−m
xn

, n = 0, 1, . . . (1.7)

where A,B, xi, yi ∈ (0,∞) for i = −m,−m + 1, . . . , 0 and m ∈ Z+. They

found unbounded solutions for system (1.7) when A and B are less than one,

and proved that when A ≥ 1 and B ≥ 1 the positive solution of system (1.7)

is bounded and persists, and when A > 1 and A > 1 the positive equilibrium

point (x̄, ȳ) = (AB−1
B−1

, AB−1
A−1

) is globally asymptotically stable.

In 2014, Q. Zhang et al. [23] investigated the global asymptotic behavior
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of the system of the following two rational difference equations:

xn+1 = A+
xn∑k

i=1 yn−i
, yn+1 = B +

yn∑k
i=1 xn−i

, n = 0, 1, . . . (1.8)

where A,B, xi, yi are positive real numbers for i = −k,−k + 1, . . . , 0 and

k ∈ Z+. More precisely, Zhang et al. proved that if A > 1
k

and B > 1
k
, then

every positive solution of system (1.8) is bounded and persists. Moreover,

they proved that every positive solution converges to the positive equilibrium

(x̄, ȳ) as n→∞.

Finally, D. Zhang et al. [22] introduced the system

xn+1 = A+
yn−k
yn

, yn+1 = A+
xn−k
xn

, n = 0, 1, . . . (1.9)

with parameter A > 0, and the initial conditions xi, yi are arbitrary positive

real numbers for i = −k,−k + 1, . . . , 0 and k ∈ Z+. They studied the

asymptotic behavior of positive solutions of the system in the cases 0 < A <

1, A = 1 and A > 1. When 0 < A < 1, they could find unbounded solutions

of system (1.9), and when A = 1 they proved that system (1.9) can have two

periodic solutions, and any positive solution is bounded and persists. They

also proved that the unique positive equilibrium point (x̄, ȳ) = (A+ 1, A+ 1)

is a global attractor when A > 1. Later in 2018, Gumus [10] investigated the

semi-cycles of the positive solutions for the same system. They also proved

that if A > 1 then the unique positive equilibrium point (x̄, ȳ) = (A+1, A+1)

is globally asymptotically stable.

Other related difference equations and systems can be found in references

[1,3–6,9,11–14,18–21]. More details about the theory of difference equations

are provided in [7, 8].
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Motivated by all the systems we previously mentioned, we introduce in

Chapter 2 the system

xn+1 = A+
yn−k
yn

, yn+1 = B +
xn−k
xn

, n = 0, 1, . . .

with parameters A > 0 and B > 0, the initial conditions xi, yi are arbitrary

positive numbers for i = −k,−k + 1, ..., 0 and k ∈ Z+. In Chapter 3, we

introduce the system

xn+1 = A+
yn
yn−k

, yn+1 = A+
xn
xn−k

, n = 0, 1, . . .

with parameter A > 0, the initial conditions xi, yi are arbitrary positive

numbers for i = −k,−k + 1, . . . , 0 and k ∈ Z+. As far as we know, no work

has been reported in the literature on the dynamics of these two system.

In Chapter 2, we study the semi-cycles of the positive solutions of system

(2.1), we also find unbounded solutions of the same system when 0 < A < 1

and 0 < B < 1, we prove that the positive solutions of system (2.1) are

bounded and persist for A ≥ 1 and B ≥ 1. Finally, we show that if A > 1

and B > 1 then the unique positive equilibrium of system (2.1) is globally

asymptotically stable. Moreover, in Chapter 3, we investigate system (3.1)

via semi-cycle analysis method, and then we assume some conditions to get

unbounded solutions for this system. We also prove that if A ≥ 1 then every

positive solution of system (3.1) is bounded, and if A = 1 then the system can

have a two periodic solution. Then, we show that the positive equilibrium of

system (3.1) is globally asymptotically stable when A > 1.

We conclude each chapter of these two chapters by numerical examples

that supports our analytical results.



1.2 Basic Definitions and Results 7

1.2 Basic Definitions and Results

In this section, we provide basic definitions and results that we’re about

to use in the following chapters. Consider the 2(k+1)-dimensional dynamical

system of the following form:

xn+1 = f(xn, xn−1, ..., xn−k, yn, yn−1, ..., yn−k) (1.10)

yn+1 = g(xn, xn−1, ..., xn−k, yn, yn−1, ..., yn−k)

n = 0, 1, ...

where f, g are continuously differentiable real valued functions.

Definition 1.1 (Equilibrium Point). A point (x̄, ȳ) is said to be an equilib-

rium point of system (1.10) if

x̄ = f(x̄, x̄, ..., x̄, ȳ, ȳ, ..., ȳ) (1.11)

and ȳ = g(x̄, x̄, ..., x̄, ȳ, ȳ, ..., ȳ)

Definition 1.2 (Stable, Unstable, Attracting, Asymptotically Stable and

Globally Asymptotically Stable Equilibrium Point). If (x̄, ȳ) is an equilibrium

point of (1.10), then

1. (x̄, ȳ) is said to be stable if for every ε > 0 there exists δ > 0

such that for every initial condition (xi, yi), i ∈ {−k,−k + 1, ..., 0}

if ‖
∑0

i=−k(xi, yi) − (x̄, ȳ)‖ < δ implies that for all n > 0, ‖(xn, yn) −

(x̄, ȳ)‖ < ε, where ‖.‖ is usual Euclidian norm in R2. Otherwise, (x̄, ȳ)

is called unstable.
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2. An equilibrium point (x̄, ȳ) is called attracting if there exists η > 0

such that

‖
0∑

i=−k

(xi, yi)− (x̄, ȳ)‖ < η implies lim
n→∞

(xn, yn) = (x̄, ȳ) (1.12)

3. (x̄, ȳ) is called a global attractor if in 2, η =∞.

4. An equilibrium point (x̄, ȳ) is called asymptotically stable if it is both

stable and attracting, and it is said to be globally asymptotically stable

if it is both stable and global attractor.

Definition 1.3 (Positive Solution). A pair of sequences of positive real num-

bers {xn, yn}∞n=−k that satisfies (1.10) is a positive solution of (1.10).

Definition 1.4 (Equilibrium Solution). If a positive solution of (1.10) is a

pair of constants (x̄, ȳ), then the solution is the equilibrium solution.

Definition 1.5 (Periodic Solution). A positive solution {xn, yn}∞n=−k of

(1.10) is said to be periodic if there exists a positive integer m, such that for

all n ≥ −k, (xn, yn) = (xn+m, yn+m). m is called the period of the solution.

Definition 1.6 (Eventually Periodic Solution). A positive solution

{xn, yn}∞n=−k of (1.10) is said to be eventually periodic if there exist an integer

l > −k and a positive integer m, such that (xn+l, yn+l) = (xn+l+m, yn+l+m)

for all n = 0, 1, . . . where m is the period of the solution.

Definition 1.7 (Bounded Solution). A positive solution {xn, yn}∞n=−k of

(1.10) is bounded and persists if there exist positive real numbers P1, Q1, P2

and Q2 such that P1 ≤ xn ≤ Q1 and P2 ≤ yn ≤ Q2 for n ≥ −k.
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Definition 1.8 (Increasing and Decreasing Solution). A positive solution

{xn, yn}∞n=−k of (1.10) is said to be increasing (respectively decreasing) if

n > m, then xn > xm and yn > ym (respectively xn < xm and yn < ym) for

all n ≥ 1 and m ≥ 1.

Definition 1.9 (Positive and Negative Semi-cycles). A string of consecutive

terms {xt, . . . , xr} (respectively {yt, . . . , yr}), t ≥ −k, and r ≤ ∞ is said

to be a positive semi-cycle if xi ≥ x̄ (respectively yi ≥ ȳ), i ∈ {t, . . . , r},

xt−1 < x̄ (respectively yt−1 < ȳ), and xr+1 < x̄ (yr+1 < ȳ).

A string of consecutive terms {xt, . . . , xr} (respectively {yt, ..., yr}), t ≥

−k, and r ≤ ∞ is said to be a negative semi-cycle if xi < x̄ (respectively

yi < ȳ), i ∈ {t, . . . , r}, xt−1 ≥ x̄ (respectively yt−1 ≥ ȳ), and xr+1 ≥ x̄

(yr+1 ≥ ȳ).

A string of sequential terms {(xt, yt), . . . , (xr, yr)}, t ≥ −k, and r ≤ ∞

is said to be a positive semi-cycle (respectively negative semi-cycle) if both

{xt, . . . , xr} and {yt, . . . , yr} are positive semi-cycles (respectively negative

semi-cycles).

Finally, a string of sequential terms {(xt, yt), . . . , (xr, yr)}, and t ≥ −k,

r ≤ ∞ is said to be a positive semi-cycle (respectively negative semi-cycle)

with respect to xn and negative semi-cycle(respectively positive semi-cycle)

with respect to yn if {xt, . . . , xr} is a positive semi-cycle (respectively negative

semi-cycle) and {yt, . . . , yr} is a negative semi-cycle (respectively positive

semi-cycle).

The first semi-cycle of a solution of (1.10) starts with the term (x−k, y−k),
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and it’s positive (respectively negative) if x−k ≥ x̄ and y−k ≥ ȳ ( respectively

x−k < x̄ and y−k < ȳ).

Definition 1.10 (Nonoscillatory Solution). A function xn (respectively yn)

is called nonoscillatory about x̄ (respectively ȳ) if there exists N ≥ −k such

that xn ≥ x̄ (respectively yn ≥ ȳ) or xn < x̄ (respectively yn < ȳ) for all

n ≥ N .

We say that a solution {xn, yn}∞n=−k of system (1.10) is a nonoscillatory

solution about (x̄, ȳ) if xn is nonoscillatory about x̄ and yn is nonoscillatory

about ȳ. However, a solution {xn, yn}∞n=−k is called oscillatory if it is not

nonoscillatory.

Definition 1.11 (Nonoscillatory Positive and Nonoscillatory negative Solu-

tions). A solution {xn, yn}∞n=−k of system (1.10) is a nonoscillatory positive

(respectively negative) solution about (x̄, ȳ) if there exists N ≥ −k such that

xn ≥ x̄ and yn ≥ ȳ (respectively xn < x̄ and yn < ȳ) for all n ≥ N .

Definition 1.12 (Linearized Form of (1.10)). Let (x̄, ȳ) be an equilibrium

point of system (1.10) where f, g are continuously differentiable functions at

(x̄, ȳ). The linearized system of (1.10) about the equilibrium point (x̄, ȳ) has

the form:

Xn+1 = JXn

where Xn = (xn, xn−1, ..., xn−k, yn, yn−1, ..., yn−k)T and J is a Jacobian matrix

of system (1.10) about the equilibrium point (x̄, ȳ).

Theorem 1.2.1. For the linearized system Xn+1 = JXn, n = 0, 1, ... of

(1.10). If all eigenvalues of the Jacobian matrix J about (x̄, ȳ) lie inside the
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open unit disk |λ| < 1, then (x̄, ȳ) is locally asymptotically stable. If one of

them has a modulus greater than one, then (x̄, ȳ) is unstable.

Definition 1.13 (Limit Superior and Limit Inferior). Let {xn} be a sequence

of real numbers. The limit superior of {xn}, denoted by lim sup{xn}, is

defined by

lim sup{xn} = lim
n→∞

[sup {xm;m ≥ n}] = inf
n≥0

[sup {xm;m ≥ n}]

The limit inferior of {xn}, denoted by lim inf{xn}, is defined by

lim inf{xn} = lim
n→∞

[inf {xm;m ≥ n}] = sup
n≥0

[inf {xm;m ≥ n}]

Definition 1.14 (Spectral Radius). Let M be any real n × n matrix, and

assume λ1, λ2, . . . , λn are the eigenvalues of M . Then the spectral radius of

M , denoted by ρ(M), is given by:

ρ(M) = max
1≤i≤n

{|λi|}

Theorem 1.2.2. Let ‖.‖ be any matrix norm defined on the set of all real

n× n matrices (Mn). Then for any matrix M ∈Mn

ρ(M) ≤ ‖A‖

Definition 1.15 (Infinite Norm of a Matrix). Let M ba any matrix inMn.

The infinite norm of M , denoted by ‖M‖∞, is given by:

‖M‖∞ = max
1≤r≤n

n∑
c=1

|mr,c|



Chapter 2
Dynamics of the System

xn+1 = A +
yn−k
yn

, yn+1 = B +
xn−k
xn

In this chapter, we introduce the following dynamical system:

xn+1 = A+
yn−k
yn

, yn+1 = B +
xn−k
xn

, n = 0, 1, . . . (2.1)

with parameters A > 0 and B > 0, the initial conditions xi, yi are arbitrary

positive numbers for i = −k,−k+ 1, ..., 0 and k ∈ Z+. We study the dynam-

ical behavior of this system in the cases: when 0 < A < 1 and 0 < A < 1,

and when A > 1 and B > 1, we also investigate the behavior of the positive

solutions of (2.1) using the semi-cycle analysis method. Finally, we give some

numerical examples that illustrate the results in this chapter.

System (2.1) has the unique positive equilibrium (x̄, ȳ) = (A+ 1, B + 1).

Since f(x̄, ȳ) = (x̄, ȳ) implies x̄ = A + ȳ
ȳ

= A + 1, and ȳ = B + x̄
x̄

= B + 1,

so (x̄, ȳ) = (A+ 1, B + 1).

12
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There are two cases to be considered:

Case 1: if A = B, then system (2.1) turns into the symmetrical system

(1.9)

xn+1 = A+
yn−k
yn

, yn+1 = A+
xn−k
xn

, n = 0, 1, . . . .

with parameter A > 0 and xi, yi are positive numbers for i = −k,−k+1, ..., 0

and k ∈ Z+, which was studied in [10,22].

Case 2: when A 6= B. This is what we’re studying.

2.1 Semi-cycle Analysis

In this section, we examine the behavior of positive solutions of system

(2.1) via semi-cycle analysis method.

Theorem 2.1.1. Let {xn, yn}∞n=−k be a solution of system (2.1). Then, ei-

ther this solution consists of a single semi-cycle or it oscillates about the

equilibrium (x̄, ȳ) = (A+ 1, B + 1) with semi-cycles having at most k terms.

Proof. Assume {xn, yn}∞n=−k is a solution of system (2.1) which has at least

two semi-cycles. Then one of these semi-cycles is positive and the other is

negative, that is, there exists n0 > −k such that

xn0 < 1 + A ≤ xn0+1 and yn0 < 1 +B ≤ yn0+1

or

xn0 ≥ 1 + A > xn0+1 and yn0 ≥ 1 +B > yn0+1
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Case 1: if xn0 < 1 + A ≤ xn0+1 and yn0 < 1 + B ≤ yn0+1, assume that

the positive semi-cycle which starts with (xn0+1, yn0+1) has k terms. Then

xn0 < 1 + A ≤ xn0+1, . . . , xn0+k implies
xn0

xn0+k

< 1

and

yn0 < 1 +B ≤ yn0+1, . . . , yn0+k implies
yn0

yn0+k

< 1

for

xn0+k+1 = A+
yn0

yn0+k

< A+ 1

and

yn0+k+1 = B +
xn0

xn0+k

< B + 1

so the semi-cycle has at most k terms.

Case 2: if xn0 ≥ 1 + A > xn0+1 and yn0 ≥ 1 + B > yn0+1, assume that

the negative semi-cycle that starts with (xn0+1, yn0+1) has k terms. Then

xn0 ≥ 1 + A > xn0+1, . . . , xn0+k implies
xn0

xn0+k

> 1

and

yn0 ≥ 1 +B > yn0+1, . . . , yn0+k implies
yn0

yn0+k

> 1

for

xn0+k+1 = A+
yn0

yn0+k

> A+ 1

and

yn0+k+1 = B +
xn0

xn0+k

> B + 1

so the semi-cycle has at most k terms. Hence, the result follows.

Theorem 2.1.2. Let k be an odd integer and {xn, yn}∞n=−k be a solution of
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system (2.1) which has k − 1 sequential semi-cycles of length one. Then,

every semi-cycle after this point is of length one.

Proof. Assume {xn, yn}∞n=−k is a solution to system (2.1) which has k − 1

sequential semi-cycles of length one and k is odd. Then there exists n0 ≥ −k

such that either

xn0 , xn0+2, ..., xn0+k−1 < 1 + A ≤ xn0+1, xn0+3, ..., xn0+k
1

and

yn0 , yn0+2, ..., yn0+k−1 < 1 +B ≤ yn0+1, yn0+3, ..., yn0+k

or

xn0 , xn0+2, ..., xn0+k−1 ≥ 1 + A > xn0+1, xn0+3, ..., xn0+k

and

yn0 , yn0+2, ..., yn0+k−1 ≥ 1 +B > yn0+1, yn0+3, ..., yn0+k

Case 1: if xn0 , xn0+2, ..., xn0+k−1 < 1 + A ≤ xn0+1, xn0+3, ..., xn0+k

and

yn0 , yn0+2, ..., yn0+k−1 < 1 +B ≤ yn0+1, yn0+3, ..., yn0+k

then

xn0+k+1 = A+
yn0

yn0+k

< A+ 1

and

yn0+k+1 = B +
xn0

xn0+k

< B + 1

so (xn0+k, yn0+k) is the kth semi-cycle of length one. By induction, assume

1xn0 is the last term in the previous semi-cycle which we have no information about
its length, and xn0+k is the first term in the next semi-cycle which we have no information
about its length.
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there are k − 1 +m semi-cycle of length one. If m is odd, then

xn0 , xn0+2, ..., xn0+k+m < 1 + A ≤ xn0+1, xn0+3, ..., xn0+k+m+1

and

yn0 , yn0+2, ..., yn0+k+m < 1 +B ≤ yn0+1, yn0+3, ..., yn0+k+m+1

then

xn0+k+m+2 = A+
yn0+m+1

yn0+k+m+1

< A+ 1

and

yn0+k+1 = B +
xn0+m+1

xn0+k+m+1

< B + 1

so every semi-cycle is of length one. If m is even, then

xn0 , xn0+2, ..., xn0+k+m+1 < 1 + A ≤ xn0+1, xn0+3, ..., xn0+k+m

and

yn0 , yn0+2, ..., yn0+k+m+1 < 1 +B ≤ yn0+1, yn0+3, ..., yn0+k+m

then

xn0+k+m+2 = A+
yn0+m+1

yn0+k+m+1

> A+ 1

and

yn0+k+1 = B +
xn0+m+1

xn0+k+m+1

> B + 1

so every semi-cycle is of length one.

Case 2: if xn0 , xn0+2, ..., xn0+k−1 ≥ 1 + A > xn0+1, xn0+3, ..., xn0+k

and

yn0 , yn0+2, ..., yn0+k−1 ≥ 1 +B > yn0+1, yn0+3, ..., yn0+k



2.1 Semi-cycle Analysis 17

then

xn0+k+1 = A+
yn0

yn0+k

> A+ 1

and

yn0+k+1 = B +
xn0

xn0+k

> B + 1

so (xn0+k, yn0+k) is the kth semi-cycle of length one. By induction, every

semi-cycle after this point is of length one. The proof is complete.

Theorem 2.1.3. System (2.1) has no nontrivial k-periodic solutions (not

necessarily prime period k).

Proof. Assume system (2.1) has a k-periodic solution. Then, (xn−k, yn−k) =

(xn, yn) for all n ≥ 0, and so

xn+1 = A+
yn−k
yn

= A+ 1, and yn+1 = B +
xn−k
xn

= B + 1, n ≥ 0.

Thus, the solution (xn, yn) = (A + 1, B + 1) is the equilibrium solution of

(2.1). The proof is complete.

Theorem 2.1.4. All non-oscillatory solutions of system (2.1) tends to the

equilibrium (x̄, ȳ) = (A+ 1, B + 1) as n→∞.

Proof. Assume system (2.1) has a non-oscillatory solution, say {xn, yn}∞n=−k.

Then by Theorem 2.1.1 the solution consists of a single semi-cycle, either this

semi-cycle is positive or negative. Assume that the solution is of a positive

semi-cycle. Then for all n ≥ −k, (xn, yn) ≥ (A+ 1, B + 1), so

xn+1 = A+
yn−k
yn
≥ A+ 1 implies yn−k ≥ yn
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and

yn+1 = B +
xn−k
xn
≥ B + 1 implies xn−k ≥ xn

so

xn−k ≥ xn ≥ xn+k ≥ ... ≥ A+1 and yn−k ≥ yn ≥ yn+k ≥ ... ≥ B+1, n ≥ 0

which means that {xn}, {yn} have k subsequences

{xnk}, {xnk+1}, ..., {xnk+(k−1)} and {ynk}, {ynk+1}, ..., {ynk+(k−1)}

each subsequence is decreasing and bounded from below, so each one of them

is convergent, so for all i = 0, 1, ..., k − 1 there exist αi, βi such that

lim
n→∞

xnk+i = αi and lim
n→∞

ynk+i = βi

Thus,

(α0, β0), (α1, β1), . . . , (αk−1, βk−1)

is a k-periodic solution of system (2.1), which contradicts Theorem 2.1.3

unless the solution is the trivial solution. Hence, the solution converges to

the equilibrium.

2.2 The Case 0 < A < 1 and 0 < B < 1

In this section, we study the asymptotic behavior of the positive solutions

of system (2.1) when 0 < A < 1 and 0 < B < 1.

Theorem 2.2.1. Suppose that 0 < A < 1 and 0 < B < 1. Let C =

max{A,B} and {xn, yn}∞n=−k be an arbitrary positive solution of (2.1). Then
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the following statements are true:

1. If k is odd and 0 < x2m−1 < 1, 0 < y2m−1 < 1, x2m > 1
1−C , y2m > 1

1−C

for m = 1−k
2
, 3−k

2
, . . . , 0, then

lim
n→∞

x2n =∞, lim
n→∞

y2n =∞, lim
n→∞

x2n+1 = A, lim
n→∞

y2n+1 = B

2. If k is odd and 0 < x2m < 1, 0 < y2m < 1, x2m−1 >
1

1−C , x2m−1 >
1

1−C

for m = 1−k
2
, 3−k

2
, . . . , 0, then

lim
n→∞

x2n+1 =∞, lim
n→∞

y2n+1 =∞, lim
n→∞

x2n = A, lim
n→∞

y2n = B

Proof. 1. Since C ≥ A and B, it is clear that 1− C ≤ 1− A and 1− B.

Then

0 < x1 =A+
y−k
y0

< A+
1

y0

< A+ 1− C ≤ A+ 1− A = 1

0 < y1 =B +
x−k
x0

< B +
1

x0

< B + 1− C ≤ B + 1−B = 1

x2 =A+
y−k+1

y1

> A+ y−k+1 > y−k+1 >
1

1− C

y2 =B +
x−k+1

x1

> B + x−k+1 > x−k+1 >
1

1− C

By induction, we have

0 < x2n−1, y2n−1 < 1, x2n, y2n >
1

1− C
for n = 1, 2, . . .
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so for l > k+3
2

x2l = A+
y2l−(k+1)

y2l−1

> A+ y2l−(k+1) = A+B +
x2l−(2k+2)

x2l−k−2

> A+B + x2l−(2k+2)

x4l = A+
y4l−(k+1)

y4l−1

> A+ y4l−(k+1) = A+B +
x4l−(2k+2)

x4l−k−2

> A+B + x4l−(2k+2) = 2A+B +
y4l−(3k+3)

y4l−2k−3

> 2A+B + y4l−(3k+3) = 2A+ 2B +
y4l−(4k+4)

y4l−3k−4

> 2A+ 2B + x4l−(4k+4)

similarly

x6l >3A+ 3B + x6l−(6k+6)

so for all r = 1, 2, . . .

x2rl > r(A+B) + x2rl−2r(k+1)

if n = rl, then as r → ∞, n → ∞, lim
n→∞

x2n = ∞. Similarly, we get

lim
n→∞

y2n =∞. Considering (2.1) and taking the limits on both sides of

each equation in the system

x2n+1 = A+
y2n−k

y2n

, y2n+1 = B +
x2n−k

x2n

we obtain lim
n→∞

x2n+1 = A and lim
n→∞

y2n+1 = B. Hence, we complete the

proof of 1.

2. If k is odd, 0 < x2m < 1, 0 < y2m < 1, x2m−1 >
1

1−C , x2m−1 >
1

1−C for

m = 1−k
2
, 3−k

2
, . . . , 0, and 1 − C ≤ 1 − A and 1 − B since C ≥ A and
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B, then it is clear that

x1 =A+
y−k
y0

> A+ y−k > y−k >
1

1− C

y1 =B +
x−k
x0

> B + x−k > x−k >
1

1− C

0 < x2 =A+
y−k+1

y1

< A+
1

y1

< A+ 1− C ≤ A+ 1− A = 1

0 < y2 =B +
x−k+1

x1

< B +
1

x1

< B + 1− C ≤ B + 1−B = 1

Using induction implies that

0 < x2n, y2n < 1, x2n−1, y2n−1 >
1

1− C
for n = 1, 2, . . .

so for l > k+1
2

x2l+1 =A+
y2l−k

y2l

> A+ y2l−k = A+B +
x2l−2k−1

x2l−k−1

> A+B + x2l−2k−1

x4l+1 =A+
y4l−k

y4l

> A+ y4l−k = A+B +
x4l−2k−1

x4l−k−1

> A+B + x4l−2k−1

=2A+B +
y4l−3k−2)

y4l−2k−2

> 2A+B + y4l−3k−2

=2A+ 2B +
x4l−4k−3

x4l−3k−3

> 2A+ 2B + x4l−4k−3

similarly

x6l+1 >3A+ 3B + x6l−6k−5

so for all r = 1, 2, . . .

x2rl+1 > r(A+B) + x2rl−2rk−(2r−1)

if n = rl, then as r → ∞, n → ∞, lim
n→∞

x2n+1 = ∞. Similarly, we get

lim
n→∞

y2n+1 =∞. Considering (2.1) and taking the limits on both sides
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of each equation in the system

x2n+2 = A+
y2n−k+1

y2n+1

, y2n+2 = B +
x2n−k+1

x2n+1

we obtain lim
n→∞

x2n = A and lim
n→∞

y2n = B.

The proof is complete.

Remark 2.2.1. Note that when A = B = 1, then system (2.1) is of the form

xn+1 = 1 +
yn−k
yn

, yn+1 = 1 +
xn−k
xn

which was studied by Zhang et al. [22].

2.3 The Case A > 1 and B > 1

In this section, we study the boundedness and persistence of the positive

solutions of system (2.1) when A > 1 and B > 1, we also prove that if

A > 1 and B > 1 then the unique positive equilibrium of (2.1) is globally

asymptotically stable.

Lemma 2.3.1. Given vj, where j = −k,−k+1, . . . , k+1. Then the solution

of the higher order linear difference equation

vn+2k+2 = avn + b, n ≥ −k, a 6= 1

is of the form

vi+l(2k+2) =

(
vi−(2k+2) +

b

a− 1

)
al+1 +

b

1− a

for i = k + 2, k + 3, . . . , 3k + 3 and l ≥ 0.
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Proof.

when n = −k, vk+2 = av−k + b

when n = −k + 1, vk+3 = av−k+1 + b

...

when n = k + 1, v3k+3 = avk+1 + b

Moreover, when n = k + 2, v3k+4 = avk+2 + b = a2v−k + ab+ b

when n = k + 3, v3k+5 = avk+3 + b = a2v−k+1 + ab+ b

...

when n = 3k + 3, v5k+5 = av3k+3 + b = a2vk+1 + ab+ b

...

hence, for i = k + 2, k + 3, . . . , 3k + 3 and l ≥ 0

vi+l(2k+2) = al+1vi−(2k+2) + b(al + al−1 + · · ·+ 1)

=

(
vi−(2k+2) +

b

a− 1

)
al+1 +

b

1− a

which completes the proof.

Theorem 2.3.2. Suppose that A > 1 and B > 1. Then every positive

solution of system (2.1) is bounded and persists. In particular, for i = k +

2, k+ 3, . . . , 3k+ 3 and l ≥ 0, every positive solution of system (2.1) satisfies

A < xi+l(2k+2) <

(
xi−(2k+2) +

(A+ 1)AB

1− AB

)(
1

AB

)l+1

+
(A+ 1)AB

AB − 1

B < yi+l(2k+2) <

(
yi−(2k+2) +

(B + 1)AB

1− AB

)(
1

AB

)l+1

+
(B + 1)AB

AB − 1
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Proof. Assume A > 1, B > 1 and {xn, yn}∞n=−k is a positive solution of

system (2.1). Since xn > 0 and yn > 0 for all n ≥ −k, (2.1) implies that

xn > A > 1, yn > B > 1 for all n ≥ 1 (2.2)

Now, using (2.1) and (2.2) we get that for all n ≥ 2

xn = A+
yn−k−1

yn−1

< A+
1

B
yn−k−1

yn = B +
xn−k−1

xn−1

< B +
1

A
xn−k−1

(2.3)

Let {vn, wn} be the solution of the system

vn+1 = A+
1

B
wn−k, wn+1 = B +

1

A
vn−k for all n ≥ k + 1 (2.4)

such that

vi = xi, wi = yi, i = −k,−k + 1, . . . , 0, 1, . . . , k + 1 (2.5)

now, we use induction to prove that

xn < vn, yn < wn, n ≥ k + 2 (2.6)

Suppose that (2.6) is true for n = m ≥ k + 2. Then, from (2.3), we get

xm+1 < A+
1

B
ym−k < A+

1

B
wm−k = vm+1

ym+1 < B +
1

A
xm−k < B +

1

A
vm−k = wm+1

Therefore, (2.6) is true. From (2.4) and (2.5), we have

vn+2k+2 =
1

AB
vn + A+ 1, wn+2k+2 =

1

AB
wn +B + 1, n ≥ −k (2.7)
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for simplicity, let a = 1
AB

, b = A+ 1 and c = B + 1. Then (2.7) becomes

vn+2k+2 = avn + b, wn+2k+2 = awn + c, n ≥ −k

Now, using Lemma 2.3.1, for all i = k + 2, k + 3, . . . , 3k + 3 and l ≥ 0

vi+l(2k+2) = al+1xi−(2k+2) + b(al + al−1 + · · ·+ 1)

=

(
xi−(2k+2) +

b

a− 1

)
al+1 +

b

1− a

since A > 1, B > 1 and a = 1
AB

, b = A+1. Then for i = k+2, k+3, . . . , 3k+3

and l ≥ 0

vi+l(2k+2) =

(
xi−(2k+2) +

(A+ 1)AB

1− AB

)(
1

AB

)l+1

+
(A+ 1)AB

AB − 1
(2.8)

Then, from (2.2), (2.6), and (2.8), for all i = k+2, k+3, . . . , 3k+3 and l ≥ 0

A < xi+l(2k+2) <

(
xi−(2k+2) +

(A+ 1)AB

1− AB

)(
1

AB

)l+1

+
(A+ 1)AB

AB − 1

Similarly, we get

B < yi+l(2k+2) <

(
yi−(2k+2) +

(B + 1)AB

1− AB

)(
1

AB

)l+1

+
(B + 1)AB

AB − 1

The proof is complete.

Theorem 2.3.3. If A > 1 and B > 1, then every positive solution of system

(2.1) converges to the equilibrium (x̄, ȳ) = (A+ 1, B + 1) as n→∞.

Proof. Let {xn, yn}∞n=−k be an arbitrary positive solution of (2.1), and let

u1 = lim sup
n→∞

xn, l1 = lim inf
n→∞

xn

u2 = lim sup
n→∞

yn, l2 = lim inf
n→∞

yn
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Using previous theorem, we have 0 < A ≤ l1 ≤ u1 < +∞ and 0 < B ≤

l2 ≤ u2 < +∞. Now, system (2.1) implies that

u1 ≤ A+
u2

l2
, u2 ≤ B +

u1

l1
, l1 ≥ A+

l2
u2

, l2 ≥ B +
l1
u1

(2.9)

then

Bu1 + l1 ≤ u1l2 ≤ Al2 + u2 (2.10)

Au2 + l2 ≤ u2l1 ≤ Bl1 + u1 (2.11)

from (2.10) we get

Bu1 + l1 ≤ Al2 + u2 (2.12)

and (2.11) implies

−Bl1 − u1 ≤ −Au2 − l2 (2.13)

from (2.12) and (2.13) we get

Bu1 + l1 −Bl1 − u1 ≤ Al2 + u2 − Au2 − l2

and

(B − 1)(u1 − l1) + (A− 1)(u2 − l2) ≤ 0

but A,B > 1 so A− 1, B − 1 > 0, also u1 − l1, u2 − l2 ≥ 0. Hence

u1 − l1 = 0 and u2 − l2 = 0

so u1 = l1 and u2 = l2. Now use (2.9) to get

B + 1 ≤ l2 = u2 ≤ B + 1 and A+ 1 ≤ l1 = u1 ≤ A+ 1

hence

l1 = u1 = A+ 1 and l2 = u2 = B + 1
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so

lim
n→∞

xn = l1 = u1 = A+ 1 and lim
n→∞

yn = l2 = u2 = B + 1

which complete the proof.

Lemma 2.3.4. If A > 1 and 0 < ε < A−1
(A+1)(k+1)

where k ∈ Z+, then

2
(1−(k+1)ε)(A+1)

< 1.

Proof.

0 < ε <
1

(k + 1)

A− 1

A+ 1
implies 0 < (k + 1)ε <

A− 1

A+ 1

so

1− (k + 1)ε > 1− A− 1

A+ 1
=

2

A+ 1

that is,

1

1− (k + 1)ε
<
A+ 1

2
implies

2

1− (k + 1)ε
< A+ 1

and so

2

(1− (k + 1)ε)(A+ 1)
< 1

The proof is complete.

Now, we’ll prove that the unique positive equilibrium (x̄, ȳ) = (A+1, B+

1) of system (2.1) is locally asymptotically stable using the previous lemma.

Theorem 2.3.5. If A > 1 and B > 1, then the unique positive equilibrium

(x̄, ȳ) = (A+ 1, B + 1) of system (2.1) is locally asymptotically stable.

Proof. System (2.1) can be formulated as a system of first order recurrence
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equations as follows:

w(1)
n =xn, w

(2)
n = xn−1, . . . , w

(k+1)
n = xn−k

v(1)
n =yn, v

(2)
n = yn−1, . . . , v

(k+1)
n = yn−k

(2.14)

Let Zn = (w
(1)
n , w

(2)
n , . . . , w

(k+1)
n , v

(1)
n , v

(2)
n , . . . , v

(k+1)
n )T , Then the linearized

equation of system (2.1) associated with (2.14) about the equilibrium point

(x̄, ȳ) = (A+ 1, B + 1) is

Zn+1 = JZn

where

Zn+1 =



w
(1)
n+1

w
(2)
n+1

...

w
(k+1)
n+1

v
(1)
n+1

v
(2)
n+1

...

v
(k+1)
n+1



=



A+ v
(k+1)
n

v
(1)
n

w
(1)
n

...

w
(k)
n

B + w
(k+1)
n

w
(1)
n

v
(1)
n

...

v
(k)
n


and J is the Jacobian matrix.

J(2k+2)×(2k+2)

=
(
D

w
(1)
n
Zn+1 . . . D

w
(k+1)
n

Zn+1 D
v
(1)
n
Zn+1 . . . D

v
(k+1)
n

Zn+1

)
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so the Jacobian matrix will be of the following form

J(2k+2)×(2k+2) =



0 0 . . . 0 0 −1
B+1

0 . . . 0 1
B+1

1 0 . . . 0 0 0 0 . . . 0 0

0 1 . . . 0 0 0 0 . . . 0 0

...
...

. . .
...

...
...

...
. . .

...
...

0 0 . . . 1 0 0 0 . . . 0 0

−1
A+1

0 . . . 0 1
A+1

0 0 . . . 0 0

0 0 . . . 0 0 1 0 . . . 0 0

0 0 . . . 0 0 0 1 . . . 0 0

...
...

. . .
...

...
...

...
. . .

...
...

0 0 . . . 0 0 0 0 . . . 1 0


Let λ1, λ2, ..., λ2k+2 be the eigenvalues of J . Define D = diag(d1, d2, ..., d2k+2)

be a diagonal matrix such that

d1 = dk+2 = 1, dm = dk+1+m = 1−mε, m = 2, 3, ..., k + 1

choose ε > 0 such that 0 < ε < min{ A−1
(A+1)(k+1)

, B−1
(B+1)(k+1)

}. Now,

D(2k+2)×(2k+2) =



d1 0 0 . . . 0

0 d2 0 . . . 0

0 0 d3 . . . 0

...
...

...
. . .

...

0 0 0 . . . d2k+2


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=



1 0 . . . 0 0 0 0 . . . 0 0

0 1− 2ε . . . 0 0 0 0 . . . 0 0

...
...

. . .
...

...
...

...
. . .

...
...

0 0 . . . 0 1− (k + 1)ε 0 0 . . . 0 0

0 0 . . . 0 0 1 0 . . . 0 0

0 0 . . . 0 0 0 1− 2ε . . . 0 0

...
...

. . .
...

...
...

...
. . .

...
...

0 0 . . . 0 0 0 0 . . . 0 1− (k + 1)ε


so for all m = 2, 3, . . . , k + 1,

1−mε ≥ 1− (k + 1)ε > 1− (k + 1)(A− 1)

(k + 1)(A+ 1)
=
A+ 1− A+ 1

A+ 1
=

2

A+ 1
> 0

so for all m, 1−mε > 0, hence D is invertible. Now,

DJD−1
(2k+2)×(2k+2) =

0 0 . . . 0 0 −1
B+1

d1
dk+2

0 . . . 0 1
B+1

d1
d2k+2

d2
d1

0 . . . 0 0 0 0 . . . 0 0

...
...

. . .
...

...
...

...
. . .

...
...

0 0 . . . dk+1

dk
0 0 0 . . . 0 0

−1
A+1

dk+2

d1
0 . . . 0 1

A+1

dk+2

dk+1
0 0 . . . 0 0

0 0 . . . 0 0 dk+3

dk+2
0 . . . 0 0

...
...

. . .
...

...
...

...
. . .

...
...

0 0 . . . 0 0 0 0 . . . d2k+2

d2k+1
0


Now, we want to show that the sum of the absolute value of entries of

each row is less than one, in order to find the infinite norm of DJD−1.
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Since ε > 0 so 1−mε > 1− (m+ 1)ε, that is, dm > dm+1, for all m. So

d2

d1

< 1,
d3

d2

< 1, . . . ,
d2k+2

d2k+1

< 1

For
1

B + 1

d1

dk+2

+
1

B + 1

d1

d2k+2

=
1

B + 1
+

1

(1− (k + 1)ε)(B + 1)

<
1

1− (k + 1)ε

1

(B + 1)
+

1

1− (k + 1)ε

1

(B + 1)

=
2

(1− (k + 1)ε)(B + 1)
use Lemma 2.3.4

< 1

For
1

A+ 1

dk+2

d1

+
1

A+ 1

dk+2

dk+1

=
1

A+ 1
+

1

(1− (k + 1)ε)(A+ 1)

<
1

1− (k + 1)ε

1

(A+ 1)
+

1

1− (k + 1)ε

1

(A+ 1)

=
2

(1− (k + 1)ε)(A+ 1)
use Lemma 2.3.4

< 1

Since J has the same eigenvalue as DJD−1. Then,

ρ(J) = max{|λi|} ≤ ‖DJD−1‖∞

but

‖DJD−1‖∞ = max


1

B+1
+ 1

(1−(k+1)ε)(B+1)
, d2
d1
, d3
d2
, . . . , dk+1

dk
,

1
A+1

+ 1
(1−(k+1)ε)(A+1)

 < 1

So the modulus of every eigenvalue of J is less than one. Hence, the unique

equilibrium point (x̄, ȳ) = (A+ 1, B+ 1) of system (2.1) is locally asymptot-

ically stable.
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Theorem 2.3.6. If A > 1 and B > 1, then the unique positive equilibrium

(x̄, ȳ) = (A+ 1, B + 1) of system (2.1) is globally asymptotically stable.

Proof. Using Theorem 2.3.5, we conclude that the equilibrium (x̄, ȳ) =

(A + 1, B + 1) of system (2.1) is asymptotically stable, but Theorem 2.3.3

implies that this equilibrium is a global attractor. Thus, the unique positive

equilibrium (x̄, ȳ) = (A+ 1, B+ 1) of system (2.1) is globally asymptotically

stable.

2.4 A Special Case k = 2

In this section, we give useful theorems to understand the behavior of

solutions when k = 2 in system (2.1), so it turns into the following:

xn+1 = A+
yn−2

yn
, yn+1 = B +

xn−2

xn
, n = 0, 1, . . . (2.15)

Theorem 2.4.1. With the exception of possibly the first semi-cycle, all semi-

cycles of system (2.15) have one or two terms.

Proof. Let {xn, yn}∞n=−2 be a solution of system (2.15). Assume there exists

n0 > 0 such that either

xn0−1 ≥ A+ 1 > xn0 and yn0−1 ≥ B + 1 > yn0

or

xn0−1 < A+ 1 ≤ xn0 and yn0−1 < B + 1 ≤ yn0
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If xn0−1 ≥ A+ 1 > xn0 and yn0−1 ≥ B + 1 > yn0 , then either xn0+1 ≥ A+ 1

and yn0+1 ≥ B + 1 so the semi cycle is of length one, or xn0+1 < A + 1 and

yn0+1 < B+1 then xn0+2 = A+
yn0−1

yn0+1
> A+1 and yn0+2 = B+

xn0−1

xn0+1
> B+1

so the semi cycle is of length two.

If xn0−1 < A+ 1 ≤ xn0 and yn0−1 < B + 1 ≤ yn0 , then either xn0+1 < A+ 1

and yn0+1 < B + 1 so the semi cycle is of length one, or xn0+1 ≥ A + 1 and

yn0+1 ≥ B+1 then xn0+2 = A+
yn0−1

yn0+1
< A+1 and yn0+2 = B+

xn0−1

xn0+1
< B+1

so the semi cycle is of length two. This completes the proof.

Theorem 2.4.2. Consider system (2.15). Every positive semi-cycle of length

two is followed by a negative semi-cycle of length one and every negative

semi-cycle of length two is followed by a positive semi-cycle of length one.

Proof. Let {xn, yn}∞n=−2 be a solution of system (2.15). Assume there exists

n0 > 0 such that either

xn0−1 < A+ 1 ≤ xn0 , xn0+1 and xn0+2 < A+ 1

and

yn0−1 < B + 1 ≤ yn0 , yn0+1 and yn0+2 < B + 1

or

xn0−1 ≥ A+ 1 > xn0 , xn0+1 and xn0+2 ≥ A+ 1

and

yn0−1 ≥ B + 1 > yn0 , yn0+1 and yn0+2 ≥ B + 1

If

xn0−1 < A+ 1 ≤ xn0 , xn0+1 and xn0+2 < A+ 1
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and

yn0−1 < B + 1 ≤ yn0 , yn0+1 and yn0+2 < B + 1

then

xn0

xn0+2

> 1 and
yn0

yn0+2

> 1

So,

xn0+3 = A+
yn0

yn0+2

> A+ 1

and

yn0+3 = B +
xn0

xn0+2

> B + 1

Hence, every positive semi-cycle of length two is followed by a negative semi-

cycle of length one.

If

xn0−1 ≥ A+ 1 > xn0 , xn0+1 and xn0+2 ≥ A+ 1

and

yn0−1 ≥ B + 1 > yn0 , yn0+1 and yn0+2 ≥ B + 1

then

xn0

xn0+2

< 1 and
yn0

yn0+2

< 1

So,

xn0+3 = A+
yn0

yn0+2

< A+ 1

and

yn0+3 = B +
xn0

xn0+2

< B + 1

Hence, every negative semi-cycle of length two is followed by a positive semi-

cycle of length one.
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Theorem 2.4.3. Suppose that there exists n0 > 1 such that (xn0 , yn0) is

the single term in a positive semi-cycle of length one. Then xn0+2 ∈ (A +

B
B+1

, A+ B+1
B

), and yn0+2 ∈ (B + A
A+1

, B + A+1
A

).

Proof. Let {xn, yn}∞n=−2 be a solution of system (2.15). Assume that there

exists n0 > 1 such that (xn0 , yn0) is the single term in a positive semi-cycle

of length one. Then

A < xn0+1, xn0−1 < A+ 1 ≤ xn0 and B < yn0+1, yn0−1 < B + 1 ≤ yn0

Hence,

A+
B

B + 1
< xn0+2 = A+

yn0−1

yn0+1

< A+
B + 1

B

and

B +
A

A+ 1
< yn0+2 = B +

xn0−1

xn0+1

< B +
A+ 1

A

The proof is complete.

Theorem 2.4.4. Let {xn, yn}∞n=−2 be a solution of system (2.15). Then

xn+3

yn
< A+1

B
and yn+3

xn
< B+1

A
for n ≥ 1.

Proof. Let {xn, yn}∞n=−2 be a solution of system (2.15). Then

xn+3 = A+
yn
yn+2

implies
xn+3

yn
=
A

yn
+

1

yn+2

<
A

B
+

1

B
=
A+ 1

B

and

yn+3 = B +
xn
xn+2

implies
yn+3

xn
=
B

xn
+

1

xn+2

<
B

A
+

1

A
=
B + 1

A

The result then follows.
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Lemma 2.4.5. System (2.1) has no nontrivial eventually k-periodic solutions

(not necessarily prime period k).

Proof. Assume system (2.1) has a k-periodic solution with delay by l terms.

Then, (xn+l, yn+l) = (xn+l+k, yn+l+k) for all n ≥ 0 , and so

xn+l+k+1 = A+
yn+l

yn+l+k

= A+ 1, and yn+l+k+1 = B +
xn+l

xn+l+k

= B + 1

Then the eventually k-periodic solution of system (2.1) with delay l is the

equilibrium of (2.1) with delay l or l + 1, that is, if (xl, yl) = (xl+k, yl+k) 6=

(A+1, B+1), then the solution is the equilibrium of (2.1) with delay l+1, and

if (xl, yl) = (xl+k, yl+k) = (A+ 1, B + 1), then the solution is the equilibrium

of (2.1) with delay l. This completes the proof.

Theorem 2.4.6. Every solution of system (2.15) that oscillates has infinitely

many semi-cycles of length two.

Proof. On the contrary, assume that system (2.15) has a solution say

{xn, yn}∞n=−2 that oscillates and has finitely many semi-cycles of length two.

Then every semi-cycle after that point is of length one.

Assume that the last term in the last semi-cycle of length two is (xn0 , yn0).

Then,

Case 1: if n0 = 2k0 for some k0 ∈ Z+, and the semi-cycle containing

(xn0 , yn0) is a positive semi-cycle, then

x2n ≥ A+ 1 > x2n+1 and y2n ≥ B + 1 > y2n+1 for all n ≥ k0
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Now,

x2n+2 = A+
y2n−1

y2n+1

≥ A+ 1 for all n > k0 implies y2n−1 ≥ y2n+1

but for all n, yn > B, so B < y2n+1 ≤ y2n−1 < B + 1 for all n > k0. Also

y2n+2 = B +
x2n−1

x2n+1

≥ B + 1 for all n > k0 implies x2n−1 ≥ x2n+1

but for all n, xn > A, so A < x2n+1 ≤ x2n−1 < 1+A for all n > k0. Moreover,

for all n > k0, x2n+2 < A+ B+1
B

and y2n+2 < B + A+1
A

. Also

x2n+3 = A+
y2n

y2n+2

< A+ 1 for all n > k0 implies y2n < y2n+2

and

y2n+3 = B +
x2n

x2n+2

< B + 1 for all n > k0 implies x2n < x2n+2

moreover, for all n > k0, A+ 1 ≤ x2n < x2n+2 < A+ B+1
B

and B + 1 ≤ y2n <

y2n+2 < B + A+1
A

.

Hence, the following occurs;

A < · · · ≤ x2k0+3 ≤ x2k0+1 < A+ 1 ≤ x2k0 < x2k0+2 · · · < A+
B + 1

B

B < · · · ≤ y2k0+3 ≤ y2k0+1 < B + 1 ≤ y2k0 < y2k0+2 · · · < B +
A+ 1

A

so there exist finite limits;

A+ 1 ≤ lim
n→∞

x2n = a < A+
B + 1

B

B + 1 ≤ lim
n→∞

y2n = b < B +
A+ 1

A

A < lim
n→∞

x2n+1 = c < A+ 1
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B < lim
n→∞

y2n+1 = d < B + 1

So system (2.15) has an eventually two periodic solution of the form

. . . , (c, d), (a, b), (c, d), (a, b), . . .

which contradicts the previous lemma, unless this solution is the equilibrium,

but the limits diverges from the equilibrium. Hence, the result follows.

Case 2: if n0 = 2k0 + 1 for some k0 ∈ Z+, and the semi-cycle containing

(xn0 , yn0) is a positive semi-cycle, then

x2n−1 ≥ 1 + A > x2n and y2n−1 ≥ 1 +B > y2n for all n ≥ k0

Now,

x2n+2 = A+
y2n−1

y2n+1

< A+1 for all n > k0 +1 implies B+1 ≤ y2n−1 < y2n+1

also

y2n+2 = B+
x2n−1

x2n+1

< B+1 for all n > k0 +1 implies A+1 ≤ x2n−1 < x2n+1

also

x2n+3 = A+
y2n

y2n+2

≥ A+ 1 for all n > k0 + 1 implies y2n ≥ y2n+2

and

y2n+3 = B +
x2n

x2n+2

≥ B + 1 for all n > k0 + 1 implies x2n ≥ x2n+2

but for all n, yn > B and xn > A, so for all n > k0 + 1, B + 1 > y2n ≥

y2n+2 > B and A + 1 > x2n ≥ x2n+2 > A, also x2n+3 < A + B+1
B

and
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y2n+3 < B + A+1
A

, which implies A + 1 ≤ x2n−1 < x2n+1 < A + B+1
B

and

B + 1 ≤ y2n−1 < y2n+1 < B + A+1
A

for all n > k0 + 1. Hence, the following

occurs;

A < · · · ≤ x2k0+4 ≤ x2k0+2 < A+ 1 ≤ x2k0+1 < x2k0+3 · · · < A+
B + 1

B

B < · · · ≤ y2k0+4 ≤ y2k0+2 < B + 1 ≤ y2k0+1 < y2k0+3 · · · < B +
A+ 1

A

which leads to the same as case 1, that is, there exist finite limits

A < lim
n→∞

x2n = a < A+ 1

B < lim
n→∞

y2n = b < B + 1

A+ 1 ≤ lim
n→∞

x2n+1 = c < A+
B + 1

B

B + 1 ≤ lim
n→∞

y2n+1 = d < B +
A+ 1

A

so system (2.15) has an eventually two periodic solution of the form

. . . , (a, b), (c, d), (a, b), (c, d), . . .

which contradicts the previous lemma.

Case 3: if n0 = 2k0 for some k0 ∈ Z+, and the semi-cycle containing

(xn0 , yn0) is a negative semi-cycle, then

x2n < A+ 1 ≤ x2n+1 and y2n < B + 1 ≤ y2n+1 for all n ≥ k0

which leads to case 2.

Case 4: if n0 = 2k0 + 1 for some k0 ∈ Z+, and the semi-cycle containing
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(xn0 , yn0) is a negative semi-cycle, then

x2n−1 < A+ 1 ≤ x2n and y2n−1 < B + 1 ≤ y2n for all n ≥ k0 + 1

which leads to case 1.

Hence, every oscillatory solution of system (2.15) has infinitely many

semi-cycles of length two.

2.5 Numerical Examples

In this section, we give several numerical examples that represent different

cases of dynamical behavior of solutions of (2.1) using MATLAB to support

the results we had in the previous sections.

Example 2.5.1. Consider the following system of two difference equations:

xn+1 = A+
yn−5

yn
, yn+1 = B +

xn−5

xn
, n = 0, 1, . . . (2.16)

with A = 0.1, B = 0.9, and the initial conditions x−5 = 0.5, x−4 =

10.1, x−3 = 0.1, x−2 = 10.2, x−1 = 0.2, x0 = 11, y−5 = 0.2, y−4 =

11.3, y−3 = 0.3, y−2 = 10.3, y−1 = 0.1, y0 = 12.9. Then the solution

of system (2.16) is unbounded since 0 < A < 1 and 0 < B < 1 and the

initial conditions satisfy the conditions in Theorem 2.2.1, and the unique

positive equilibrium (x̄, ȳ) = (1.1, 1.9) is not globally asymptotically stable

(see Figure 2.1, Theorem 2.2.1).

Example 2.5.2. Consider system (2.16) with A = 3, B = 1.5, and the initial

conditions x−5 = 2.5, x−4 = 3.7, x−3 = 1.5, x−2 = 0.7, x−1 = 0.5, x0 =
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0.2, y−5 = 2.2, y−4 = 3.3, y−3 = 1.2, y−2 = 0.3, y−1 = 0.2, y0 = 0.9. Since

A > 1 and B > 1, the solution of system (2.16) is bounded and persists

(see Theorem 2.3.2), and the unique positive equilibrium (x̄, ȳ) = (4, 2.5) is

globally asymptotically stable (see Figure 2.2, Theorem 2.3.6).

Example 2.5.3. Consider the following system of difference equations:

xn+1 = A+
yn−4

yn
, yn+1 = B +

xn−4

xn
, n = 0, 1, . . . (2.17)

with A = 2, B = 3, and the initial conditions x−4 = 0.7, x−3 = 1.5, x−2 =

1, x−1 = 2.1, x0 = 0.5, y−4 = 2.3, y−3 = 1, y−2 = 0.3, y−1 = 0.2, y0 = 0.9.

Then the unique positive equilibrium (x̄, ȳ) = (3, 4) is globally asymptotically

stable since A > 1 and B > 1 (see Theorem 2.3.6), and the solution of system

(2.17) is bounded and persists (see Figure 2.3, Theorem 2.3.2). Note that in

this example k = 4 is even, while in Example 2.5.2, k = 5 is odd, but in both

cases we had the same conclusion.
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Figure 2.1: The plot of the positive solution of system (2.16) with A = 0.1
and B = 0.9

Figure 2.3: The plot of the positive solution of system (2.17) with A = 2 and
B = 3
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Figure 2.2: The plot of the positive solution of system (2.16) with A = 3 and
B = 1.5



Chapter 3
Dynamics of the System

xn+1 = A + yn
yn−k

, yn+1 = A + xn
xn−k

In this chapter, we introduce the symmetrical system:

xn+1 = A+
yn
yn−k

, yn+1 = A+
xn
xn−k

, n = 0, 1, . . . (3.1)

with parameter A > 0, the initial conditions xi, yi are arbitrary positive

numbers for i = −k,−k + 1, . . . , 0 and k ∈ Z+. We study the semi-cycles

of the positive solutions of system (3.1), we also investigate the dynamical

behavior of the solutions of the same system when the parameter A > 1,

A = 1 and 0 < A < 1. Finally, we provide numerical examples to confirm

our results.

The previous system has a unique positive equilibrium (x̄, ȳ) = (A+1, A+

1). Since f(x̄, ȳ) = (x̄, ȳ) implies x̄ = A+ ȳ
ȳ

= A+ 1, and ȳ = A+ x̄
x̄

= A+ 1,

so (x̄, ȳ) = (A+ 1, A+ 1).

44
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There are two cases to consider:

Case 1: If the initial conditions xi, yi in system (3.1) satisfy the equalities

xi = yi for i = −k,−k + 1, . . . , 0, and k ∈ Z+, then

x1 = A+
y0

y−k
= A+

x0

x−k
= y1 and x2 = A+

y1

y−k+1

= A+
x1

x−k+1

= y2

by induction, if xi = yi for all i ≤ m, then xm+1 = A + ym
ym−k

= A + xm

xm−k
=

ym+1. Hence, xn = yn for all n ≥ −k, thus, system (3.1) reduces to the

difference equation

xn+1 = A+
xn
xn−k

(3.2)

which was studied in [1] by Abu-Saris and Devault who showed that every

solution of equation (3.2) is bounded and persists, and that the unique posi-

tive equilibrium x̄ = 1 +A of equation (3.2) is globally asymptotically stable

if A > 1. They also improved this result for k = 2 and 3, and studied the

semi-cycles of the nontrivial solutions of equation (3.2).

Case 2: If xi 6= yi for some i ∈ {−k,−k + 1, . . . , 0}, k ∈ Z+, then this is

the case we’re about to study in this chapter.

3.1 Semi-cycle Analysis

In this section, we characterize the behavior of positive solutions of system

(3.1) about the equilibrium using semi-cycle analysis method.

Theorem 3.1.1. Let {xn, yn}∞n=−k be a solution to system (3.1). Then, either

this solution is non-oscillatory solution or it oscillates about the equilibrium
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(x̄, ȳ) = (A+ 1, A+ 1) with semi-cycles such that if there exists a semi-cycle

with at least k terms, then every semi-cycle after that has at least k+1 terms.

Proof. Assume {xn, yn}∞n=−k is a solution to system (3.1), and there exists

an integer n0 ≥ 0 such that (xn0 , yn0) is the last term of a semi-cycle that

has at least k terms. Then, either

. . . , xn0−k+1, . . . , xn0−1, xn0 < 1 + A ≤ xn0+1

and

. . . , yn0−k+1, . . . , yn0−1, yn0 < 1 + A ≤ yn0+1

or

. . . , xn0−k+1, . . . , xn0−1, xn0 ≥ 1 + A > xn0+1

and

. . . , yn0−k+1, . . . , yn0−1, yn0 ≥ 1 + A > yn0+1

Case 1: if . . . , xn0−k+1, . . . , xn0−1, xn0 < 1 +A ≤ xn0+1 and . . . , yn0−k+1, . . . ,

yn0−1, yn0 < 1 + A ≤ yn0+1, then

xn0+2 = A+
yn0+1

yn0−k+1

> A+ 1 and yn0+2 = A+
xn0+1

xn0−k+1

> A+ 1

xn0+3 = A+
yn0+2

yn0−k+2

> A+ 1 and yn0+3 = A+
xn0+2

xn0−k+2

> A+ 1

...

xn0+k+1 = A+
yn0+k

yn0

> A+ 1 and yn0+k+1 = A+
xn0+k

xn0

> A+ 1

hence, the semi-cycle starting with (xn0+1, yn0+1) has at least k + 1 terms.

Now, assume the semi-cycle which starts with (xn0+1, yn0+1) has exactly k+1

terms, then the following semi-cycle will start with (xn0+k+2, yn0+k+2) such
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that xn0+1, xn0+2, . . . , xn0+k+1 ≥ 1+A > xn0+k+2 and yn0+1, yn0+2, . . . , yn0+k+1

≥ 1 + A > yn0+k+2, then for i = 1, 3, . . . , k

xn0+k+2+i = A+
yn0+k+1+i

yn0+1+i

< A+ 1 and yn0+k+2+i = A+
xn0+k+1+i

xn0+k+1+i

< A+ 1

from here, it’s clear that every semi-cycle after this point must have at least

k + 1 terms.

Case 2: if . . . , xn0−k+1, . . . , xn0−1, xn0 ≥ 1 +A > xn0+1 and . . . , yn0−k+1, . . . ,

yn0−1, yn0 ≥ 1 + A > yn0+1, then for all i = 2, 3, . . . , k + 1

xn0+i = A+
yn0−1+i

yn0−k−1+i

< A+ 1 and yn0+i = A+
xn0−1+i

xn0−k−1+i

< A+ 1

hence, the semi-cycle starting with (xn0+1, yn0+1) has at least k + 1 terms.

Now, assume this semi-cycle has exactly k+1 terms, then the following semi-

cycle will start with (xn0+k+2, yn0+k+2) such that xn0+1, xn0+2, . . . , xn0+k+1 <

1 + A ≤ xn0+k+2 and yn0+1, yn0+2, . . . , yn0+k+1 < 1 + A ≤ yn0+k+2, then for

i = 1, 3, . . . , k

xn0+k+2+i = A+
yn0+k+1+i

yn0+1+i

> A+ 1 and yn0+k+2+i = A+
xn0+k+1+i

xn0+1+i

> A+ 1

now, it’s clear that every semi-cycle after this point must have at least k+ 1

terms. Hence, if there exists a semi-cycle with at least k terms, then every

semi-cycle after that has at least k + 1 terms. The proof is complete.

Theorem 3.1.2. System (3.1) has no nontrivial periodic solutions of period

k (not necessarily prime period k).

Proof. Assume system (3.1) has a k-periodic solution. Then, (xn−k, yn−k) =
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(xn, yn) for all n ≥ 0, and so

xn+1 = A+
yn
yn−k

= A+ 1, and yn+1 = A+
xn
xn−k

= A+ 1, forall n ≥ 0

Thus, the solution (xn, yn) = (A + 1, A + 1) is the equilibrium solution of

(3.1).

Theorem 3.1.3. Any increasing solution to system (3.1) is non-oscillatory

positive (the infinite semi-cycle in the solution is a positive semi-cycle).

Proof. Assume {xn, yn}∞n=−k is an increasing non-oscillatory solution to sys-

tem (3.1). Then, either A + 1 ≤ x1 and A + 1 ≤ y1 or x1 < A + 1 and

y1 < A+ 1.

Case 1: if A + 1 ≤ x1 and A + 1 ≤ y1, since the solution is increasing

then A + 1 ≤ x1 ≤ x2 ≤ x3 ≤ . . . and A + 1 ≤ y1 ≤ y2 ≤ y3 ≤ . . . , so the

solution has an infinite positive semi-cycle. We also can see that as soon as

the solution enters a positive semi-cycle, it remains in this semi-cycle.

Case 2: if x1 < A+ 1 and y1 < A+ 1, then we claim that the semi-cycle

containing (x1, y1) ends with (xi, yi) such that 1 ≤ i ≤ k + 1. If i = k + 2,

then

xk+2 = A+
yk+1

y1

< A+ 1 and yk+2 = A+
xk+1

x1

< A+ 1

imply that

yk+1 < y1 and xk+1 < x1 but k + 1 > 1

which contradicts the fact that the solution is increasing, so any increasing

solution of system is non-oscillatory positive. Moreover, if the increasing
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solution has a negative semi-cycle, then this semi-cycle can have at most

2k + 2 terms.

Theorem 3.1.4. System (3.1) has no non-oscillatory negative solutions (has

no infinite negative semi-cycle).

Proof. On the contrary, assume system (3.1) has a non-oscillatory solu-

tion say {xn, yn}∞n=−k which has an infinite negative semi-cycle, and as-

sume this semi-cycle starts with (xN , yN), where N ≥ −k. Then for all

n ≥ N, (xn, yn) < (A+ 1, A+ 1), hence

xn+1 = A+
yn
yn−k

< A+ 1 implies yn < yn−k for n ≥ max{1, N − 1}

and

yn+1 = A+
xn
xn−k

< A+ 1 implies xn < xn−k for n ≥ max{1, N − 1}

so for all n ≥ max{1, N}

A < · · · < xn+k < xn < xn−k < A+ 1 and

A < · · · < yn+k < yn < yn−k < A+ 1

which means that {xn}, {yn} have k subsequences

{xnk}, {xnk+1}, ..., {xnk+(k−1)} and {ynk}, {ynk+1}, ..., {ynk+(k−1)}

each subsequence is decreasing and bounded from below, so each one of them

is convergent, so for all i = 0, 1, ..., k − 1 there exist αi, βi such that

lim
n→∞

xnk+i = αi and lim
n→∞

ynk+i = βi
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Thus,

(α0, β0), (α1, β1), . . . , (αk−1, βk−1)

is a k-periodic solution of system (3.1), which contradicts Theorem 3.1.2

unless the solution is the trivial solution. Hence, the solution converges to

the equilibrium, which is a contradiction, because the solution is diverging

from the equilibrium. Hence, system (3.1) has no non-oscillatory negative

solutions.

Theorem 3.1.5. System (3.1) has no decreasing non-oscillatory solutions.

Proof. Assume system (3.1) has a decreasing non-oscillatory solution say

{xn, yn}∞n=−k. As in proof of Theorem 3.1.3, the solution is either of the form

· · · ≤ x3 ≤ x2 ≤ x1 ≤ A+ 1 and · · · ≤ y3 ≤ y2 ≤ y1 ≤ A+ 1

or there exists a positive integer n0 ≥ k + 1, such that

· · · ≤ xn0+2 ≤ xn0+1 ≤ A+ 1 ≤ xn0 ≤ xn0−1 . . .

and

· · · ≤ yn0+2 ≤ yn0+1 ≤ A+ 1 ≤ yn0 ≤ yn0−1 . . .

where the positive semi-cycle ending with (xn0 , yn0) can have at most 2k+ 2

terms. In both cases, the solution has an infinite negative semi-cycle which

contradicts Theorem 3.1.4. Hence, system (3.1) has no decreasing non-

oscillatory solutions.

Theorem 3.1.6. Consider system (3.1). If k is even, then the following

statements hold:
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(a) Every semi-cycle has length at most 2k + 1.

(b) The extreme term in a semi-cycle occurs in the first k+ 2 terms of the

semi-cycle.

(c) Every solution oscillates about (x̄, ȳ) = (A+ 1, A+ 1).

Proof. Let {xn, yn}∞n=−k be a solution of system (3.1). In the case of a neg-

ative semi-cycle, let (xN , yN) be the first term in a negative semi-cycle, and

suppose this semi-cycle is of length 2k + 1. Then

xN , xN+1, . . . , xN+2k < A+ 1 and yN , yN+1, . . . , yN+2k < A+ 1

for i = 1, 2, . . . , k − 1, we have

xN+k+i+1 = A+
yN+k+i

yN+i

> A+
yN+k+i

A+ 1
> yN+k+i, since yN+k+i < A+ 1

and

yN+k+i = A+
xN+k+i−1

xN+i−1

> A+
xN+k+i−1

A+ 1
> xN+k+i−1

which imply that

xN+k < yN+k+1 < xN+k+2 < yN+k+3 < xN+k+4 < · · · < xN+2k

and

yN+k < xN+k+1 < yN+k+2 < xN+k+3 < yN+k+4 < · · · < yN+2k

so

xN+k < xN+2k and yN+k < yN+2k
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now, for

xN+2k+1 = A+
yN+2k

yN+k

> A+ 1 and yN+2k+1 = A+
xN+2k

xN+k

> A+ 1

and so a negative semi-cycle has at most 2k+1 terms. The case of a positive

semi-cycle is similar to the previous case. Let (xN , yN) be the first term in a

positive semi-cycle, and suppose this semi-cycle has 2k + 1 terms. Then

xN , xN+1, . . . , xN+2k ≥ A+ 1 and yN , yN+1, . . . , yN+2k ≥ A+ 1

for i = 1, 2, . . . , k − 1, we have

xN+k+i+1 = A+
yN+k+i

yN+i

≤ A+
yN+k+i

A+ 1
≤ yN+k+i, since yN+k+i ≥ A+ 1

and

yN+k+i = A+
xN+k+i−1

xN+i−1

≤ A+
xN+k+i−1

A+ 1
≤ xN+k+i−1

which imply that

xN+k ≥ yN+k+1 ≥ xN+k+2 ≥ yN+k+3 ≥ xN+k+4 ≥ · · · ≥ xN+2k

and

yN+k ≥ xN+k+1 ≥ yN+k+2 ≥ xN+k+3 ≥ yN+k+4 ≥ · · · ≥ yN+2k

now, for

xN+2k+1 = A+
yN+2k

yN+k

≤ A+ 1 and yN+2k+1 = A+
xN+2k

xN+k

≤ A+ 1

and so a semi-cycle has at most 2k + 1 terms. From this proof, it is obvious

that the extreme term in a semi-cycle occurs in the first k + 2 terms. Since

every semi-cycle is of length at most 2k + 1, this implies that the solution
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oscillates about the equilibrium (x̄, ȳ) = (A+ 1, A+ 1).

3.2 The Case 0 < A < 1

In this section, we study the asymptotic behavior of system (3.1) when

0 < A < 1, we also prove that when 0 < A < 1, system (3.1) can have

unbounded solution given some certain conditions.

Theorem 3.2.1. Assume that 0 < A < 1 and {xn, yn}∞n=−k is an arbitrary

positive solution of (3.1). Then the following statements are true:

1. If k is odd and 0 < x2m−1 < 1, x2m > 1
1−A , y2m−1 >

1
1−A , 0 < y2m < 1

for m = 1−k
2
, 3−k

2
, . . . , 0, then

lim
n→∞

x2n =∞, lim
n→∞

y2n+1 =∞, lim
n→∞

x2n+1 = A, lim
n→∞

y2n = A

2. If k is odd and 0 < x2m < 1, x2m−1 >
1

1−A , y2m > 1
1−A , 0 < y2m−1 < 1

for m = 1−k
2
, 3−k

2
, . . . , 0, then

lim
n→∞

x2n+1 =∞, lim
n→∞

y2n =∞, lim
n→∞

x2n = A, lim
n→∞

y2n+1 = A

Proof. 1. If k is odd and 0 < x2m−1 < 1, x2m > 1
1−A , y2m−1 > 1

1−A ,



3.2 The Case 0 < A < 1 54

0 < y2m < 1 for m = 1−k
2
, 3−k

2
, . . . , 0, then it is clear that

0 < x1 =A+
y0

y−k
< A+

1

y−k
< A+ 1− A = 1

y1 =A+
x0

x−k
> A+ x0 > x0 >

1

1− A

x2 =A+
y1

y−k+1

> A+ y1 > y1 >
1

1− A

0 < y2 =A+
x1

x−k+1

< A+
1

x−k+1

< A+ 1− A = 1

By induction, we get that for all n = 1, 2, . . .

0 < x2n−1 < 1, x2n >
1

1− A
, y2n−1 >

1

1− A
, 0 < y2n < 1

so for l ≥ 1

x2l = A+
y2l−1

y2l−(k+1)

> A+ y2l−1 = 2A+
x2l−2

x2l−k−2

> 2A+ x2l−2

x4l = A+
y4l−1

y4l−(k+1)

> A+ y4l−1 = 2A+
x4l−2

x4l−k−2

> 2A+ x4l−2

= 3A+
y4l−3

y4l−k−3

> 3A+ y4l−3 = 4A+
x4l−4

x4l−k−4

> 4A+ x4l−4

also

x6l > 6A+ x6l−6

so for all r = 1, 2, . . .

x2rl > 2rA+ x2rl−2r

if n = rl, then as r →∞, n→∞ and lim
n→∞

x2n =∞. Considering (3.1)

and taking the limits on both sides of the equation

y2n+1 = A+
x2n

x2n−k
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we get lim
n→∞

y2n+1 = ∞ since 0 < x2n−k < 1 for all n = 0, 1, . . . . Now,

take the limits on both sides of the equation

x2n+1 = A+
y2n

y2n−k

we obtain lim
n→∞

x2n+1 = A since 0 < y2n < 1 for all n. Similarly, take

the limits on both sides of the equation

y2n+2 = A+
x2n+1

x2n−k+1

to get lim
n→∞

y2n+1 = A. Hence, we complete the proof of 1.

2. If k is odd and 0 < x2m < 1, x2m−1 >
1

1−A , y2m > 1
1−A , 0 < y2m−1 < 1

for m = 1−k
2
, 3−k

2
, . . . , 0, then

x1 =A+
y0

y−k
> A+ y0 > y0 >

1

1− A

0 < y1 =A+
x0

x−k
< A+

1

x−k
<< A+ 1− A = 1

0 < x2 =A+
y1

y−k+1

< A+
1

y−k+1

< A+ 1− A = 1

y2 =A+
x1

x−k+1

> A+ x1 > x1 >
1

1− A

By induction, we have for all n = 1, 2, . . .

0 < x2n < 1, x2n−1 >
1

1− A
, y2n >

1

1− A
, 0 < y2n−1 < 1
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so for l ≥ 1

x2l+1 = A+
y2l

y2l−k
> A+ y2l = 2A+

x2l−1

x2l−k−1

> 2A+ x2l−1

x4l+1 = A+
y4l

y4l−k
> A+ y4l = 2A+

x4l−1

x4l−k−1

> 2A+ x4l−1

= 3A+
y4l−2

y4l−k−2

> 3A+ y4l−2 = 4A+
x4l−3

x4l−k−3

> 4A+ x4l−3

similarly, x6l+1 > 6A+ x6l−5. So for all r = 1, 2, . . .

x2rl+1 > 2rA+ x2rl−(2r−1)

if n = rl, then as r → ∞, n → ∞ and lim
n→∞

x2n+1 = ∞. Considering

(3.1) and taking the limits on both sides of the equation

y2n+2 = A+
x2n+1

x2n−k+1

we get lim
n→∞

y2n = ∞ since 0 < x2n−k+1 < 1 for all n = 0, 1, . . . . Now,

take the limits on both sides of the equation

y2n+1 = A+
x2n

x2n−k

we obtain lim
n→∞

y2n+1 = A since 0 < x2n < 1 for all n. Similarly, take

the limits on both sides of the equation

x2n+2 = A+
y2n+1

y2n−k+1

to get lim
n→∞

x2n = A, which completes the proof.
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3.3 The Case A = 1

In this section, we study the boundedness , persistence and periodicity of

positive solutions of system (3.1) when A = 1.

Theorem 3.3.1. If A = 1, then every positive solution of system (3.1) is

bounded and persists.

Proof. Assume A = 1 and {xn, yn}∞n=−k is a positive solution of system (3.1).

Then xn, yn > A = 1 for all n > 0, so we can choose a real number L to

be close enough to 1 such that 1 < L < L
L−1

and xi, yi ∈ [L, L
L−1

] for all

i = 1, . . . , k + 1. Now from (3.1), xk+2 = 1 + yk+1

y1
and yk+2 = 1 + xk+1

x1
, then

L = 1 +
L

L/(L− 1)
≤ xk+2, yk+2 ≤ 1 +

L/(L− 1)

L
=
L− 1 + 1

L− 1
=

L

L− 1

by induction, xi, yi ∈ [L, L
L−1

] for all i = 1, 2, .... The proof is complete.

Theorem 3.3.2. Suppose A = 1, {xn, yn}∞n=−k is a positive solution of sys-

tem (3.1). Then

lim inf
n→∞

xn = lim inf
n→∞

yn

lim sup
n→∞

xn = lim sup
n→∞

yn

Proof. Let

l1 = lim inf
n→∞

xn, l2 = lim inf
n→∞

yn

u1 = lim sup
n→∞

xn, u2 = lim sup
n→∞

yn
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Clearly, 1 < l1 ≤ u1 and 1 < l2 ≤ u2. Now, since xn+1 = 1 + yn
yn−k

, yn+1 =

1 + xn

xn−k
, l1 ≤ xi ≤ u1 and l2 ≤ yi ≤ u2 for all i, so

l1 ≥ 1 +
l2
u2

, l2 ≥ 1 +
l1
u1

, u1 ≤ 1 +
u2

l2
, u2 ≤ 1 +

u1

l1

so

l1u2 ≥ l2 + u2, l2u1 ≥ l1 + u1, u1l2 ≤ l2 + u2, u2l1 ≤ l1 + u1

so

l2u1 ≤ l2 + u2 ≤ l1u2 ≤ l1 + u1 ≤ l2u1

so

l2 + u2 = l2u1 (3.3)

l1u2 = l2u1 (3.4)

l1 + u1 = l2u1 (3.5)

from (3.4), we can get

l1
l2

=
u1

u2

(3.6)

divide (3.5) by l2 to get

l1
l2

+
u1

l2
= u1 (3.7)

substitute (3.6) in (3.7) to get

u1

u2

+
u1

l2
= u1

which implies

1

u2

+
1

l2
= 1, and l2 =

u2

u2 − 1
(3.8)
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substitute (3.8) in (3.3) to get

u2 +
u2

u2 − 1
= u1 ·

u2

u2 − 1

which implies

1 +
1

u2 − 1
=

u1

u2 − 1

so, we can get

u2

u2 − 1
=

u1

u2 − 1

Hence, u1 = u2, and from (3.4) we can get l1 = l2. The result then follows.

Theorem 3.3.3. Suppose A = 1.

1. If k is odd, then every positive solution of system (3.1) with prime

period two takes the form

. . . , (a,
a

a− 1
), (

a

a− 1
, a), (a,

a

a− 1
), (

a

a− 1
, a), . . . with 1 < a 6= 2

2. If k is even, there do not exist positive nontrivial solution of system

(3.1) with prime period two.

Proof. 1. Let {xn, yn}∞n=−k be a positive two periodic solution. Then there

exist a, b, c, d ∈ R+, all are greater than 1, such that for all n ≥ 0,

x2n−k = a, y2n−k = b, x2n+1−k = c, y2n+1−k = d, that is, the solution

is . . . , (a, b), (c, d), (a, b), (c, d), . . .

Case 1: if a = c, then x2n−k = x2n+1−k, so x−k = x−k+1 = x−k+2 =

x−k+3 = . . . , so b = d, which implies that the solution is not two

periodic which is not the case.
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Case 2: let a 6= c. Then b 6= d, so using the previous theorem, we can

get

min{a, c} = lim inf
n→∞

xn = lim inf
n→∞

yn = min{b, d}

and

max{a, c} = lim sup
n→∞

xn = lim sup
n→∞

yn = max{b, d}

hence, we have the following cases:

(a) if a < c and b < d, then a = b and c = d, then the solution is of

the form: . . . , (a, a), (c, c), (a, a), (c, c), . . .

(b) if a < c and b > d, then a = d and c = b, then the solution is of

the form: . . . , (a, c), (c, a), (a, c), (c, a), . . .

(c) if a > c and b < d, then we get case (b).

(d) if a > c and b > d, then we get case (a).

In (a), x2n−k = a, y2n−k = a, x2n+1−k = c, y2n+1−k = c. But x1 =

1 + y0
y−k

, so a = 1 + c
a
, which implies a2 = c+ a, also x2 = 1 + y1

y−k+1
, so

c = 1 + a
c
, which implies c2 = c + a and hence, a2 = c2 but a 6= c, so

c = −a. Which is not the case, because we only consider the positive

solutions.

In (b), x2n−k = a, y2n−k = c, x2n+1−k = c, y2n+1−k = a. But x1 =

1 + y0
y−k

, so a = 1 + a
c
, which implies ac = c+ a, and hence, c = a

a−1
.

Then the solution is . . . , (a, a
a−1

), ( a
a−1

, a), (a, a
a−1

), ( a
a−1

, a), . . . .

2. Let {xn, yn}∞n=−k be a positive two periodic solution and k is even, if

x2n−k = a, y2n−k = b, x2n+1−k = c, y2n+1−k = d, then
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Case 1: if a = c, then b = d so the solution is not two periodic which

is not the case.

Case 2: if a 6= c, then b 6= d, so

min{a, c} = lim inf
n→∞

xn = lim inf
n→∞

yn = min{b, d}

and

max{a, c} = lim sup
n→∞

xn = lim sup
n→∞

yn = max{b, d}

The same as before:

(a) if a < c and b < d, then a = b and c = d, then the solution is of

the form: . . . , (a, a), (c, c), (a, a), (c, c), ...

(b) if a < c and b > d, then a = d and c = b, then the solution is of

the form: . . . , (a, c), (c, a), (a, c), (c, a), ...

(c) if a > c and b < d, then we get case (b).

(d) if a > c and b > d, then we get case (a).

In (a), x2n−k = a, y2n−k = a, x2n+1−k = c, y2n+1−k = c. But x1 =

1+ y0
y−k

, so c = 1+a
a
, which implies c = 2, also x2 = 1+ y1

y−k+1
, so a = 1+ c

c
,

which implies a = 2. Then the solution is . . . , (2, 2), (2, 2), . . . , which

is not two periodic .

In (b), x2n−k = a, y2n−k = c, x2n+1−k = c, y2n+1−k = a. But x1 =

1 + y0
y−k

, so a = 1 + c
c
, which implies a = 2, also x2 = 1 + y1

y−k+1
, so

c = 1+ 2
a
, which implies c = 2. Then the solution is . . . , (2, 2), (2, 2), . . . ,

which is not two periodic. So when k is even, there is no nontrivial two

periodic solution.
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3.4 The Case A > 1

In this section, we study the boundedness and persistence of the positive

solutions of system (3.1) when A > 1, and we show that the unique positive

equilibrium is a globally asymptotically stable.

Lemma 3.4.1. Given vk, vk+1. Then the solution of the second order linear

difference equation

vn+2 = avn + b, n ≥ k, a 6= 1

is

vk+2l =

(
vk +

b

a− 1

)
al +

b

1− a

vk+2l+1 =

(
vk+1 +

b

a− 1

)
al +

b

1− a

for all l ≥ 0.
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Proof.

when n = k, vk+2 = avk + b

when n = k + 1, vk+3 = avk+1 + b

when n = k + 2, vk+4 = avk+2 + b = a2vk + ab+ b

when n = k + 3, vk+5 = avk+3 + b = a2vk+1 + ab+ b

when n = k + 4, vk+6 = avk+4 + b = a3vk + a2b+ ab+ b

when n = k + 5, vk+7 = avk+5 + b = a3vk+1 + a2b+ ab+ b

hence, for all l ≥ 0

vk+2l = alvk + b(al−1 + al−2 + · · ·+ 1) =

(
vk +

b

a− 1

)
al +

b

1− a

vk+2l+1 = alvk+1 + b(al−1 + al−2 + · · ·+ 1) =

(
vk+1 +

b

a− 1

)
al +

b

1− a

this completes the proof.

Theorem 3.4.2. Suppose A > 1. Then every positive solution of system

(3.1) is bounded and persists. In fact, for all l ≥ 0,

A < xk+2l ≤
(
xk +

A2

1− A

)(
1

A

)2l

+
A2

A− 1

and

A < xk+2l+1 ≤
(
xk+1 +

A2

1− A

)(
1

A

)2l

+
A2

A− 1

similarly,

A < yk+2l ≤
(
yk +

A2

1− A

)(
1

A

)2l

+
A2

A− 1

and

A < yk+2l+1 ≤
(
xk+1 +

A2

1− A

)(
1

A

)2l

+
A2

A− 1
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Proof. Assume A > 1 and {xn, yn}∞n=−k is a positive solution of system (3.1).

Since xn > 0 and yn > 0 for all n ≥ −k, (3.1) implies that

xn, yn > A for all n ≥ 1 (3.9)

use (3.1) and (3.9) to get that for all n ≥ k + 2

xn = A+
yn−1

yn−k−1

< A+
1

A
yn−1, yn < A+

1

A
xn−1 (3.10)

Let {vn, wn} be the solution of the following system

vn = A+
1

A
wn−1, wn = A+

1

A
vn−1 for all n ≥ k + 2 (3.11)

such that

vi = xi, wi = yi, i = 1, 2, . . . , k + 1 (3.12)

now, we use induction to prove that

xn < vn, yn < wn, n ≥ k + 2 (3.13)

Suppose that (3.13) is true for n = m ≥ k + 2. Then, from (3.10), we get

xm+1 < A+
1

A
ym < A+

1

A
wm = vm+1

ym+1 < A+
1

A
xm < A+

1

A
vm = wm+1

(3.14)

Therefore, (3.13) is true. From (3.11) and (3.12), we have

vn+2 =
1

A2
vn + A+ 1, wn+2 =

1

A2
wn + A+ 1, n ≥ k (3.15)

for simplicity, let a = 1
A2 and b = A+ 1. Then (3.15) becomes
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vn+2 = avn + b, wn+2 = awn + b, n ≥ k

Now, using Lemma 3.4.1, for all l ≥ 0

vk+2l = alxk + b(al−1 + al−2 + · · ·+ 1) =

(
xk +

b

a− 1

)
al +

b

1− a

vk+2l+1 = alxk+1 + b(al−1 + al−2 + · · ·+ 1) =

(
xk+1 +

b

a− 1

)
al +

b

1− a

since A > 1, and a = 1
A2 , b = A+ 1. Then for all l ≥ 0

vk+2l =

(
xk +

A2

1− A

)(
1

A

)2l

+
A2

A− 1

vk+2l+1 =

(
xk+1 +

A2

1− A

)(
1

A

)2l

+
A2

A− 1

(3.16)

Then, from (3.9), (3.13), and (3.16), for all l ≥ 0

A < xk+2l ≤
(
xk +

A2

1− A

)(
1

A

)2l

+
A2

A− 1

and

A < xk+2l+1 ≤
(
xk+1 +

A2

1− A

)(
1

A

)2l

+
A2

A− 1

Similarly, we get

A < yk+2l ≤
(
yk +

A2

1− A

)(
1

A

)2l

+
A2

A− 1

and

A < yk+2l+1 ≤
(
xk+1 +

A2

1− A

)(
1

A

)2l

+
A2

A− 1

The proof is complete.

Theorem 3.4.3. Suppose A > 1. Then every positive solution of system

(3.1) converges to the equilibrium (A+ 1, A+ 1) as n→∞.
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Proof. Let

l1 = lim inf
n→∞

xn, l2 = lim inf
n→∞

yn

u1 = lim sup
n→∞

xn, u2 = lim sup
n→∞

yn

Clearly, 1 < l1 ≤ u1 and 1 < l2 ≤ u2. Now, since xn+1 = 1 + yn
yn−k

and

yn+1 = 1 + xn

xn−k
, so

l1 ≥ A+
l2
u2

, l2 ≥ A+
l1
u1

, u1 ≤ A+
u2

l2
, u2 ≤ A+

u1

l1

so

l1u2 ≥ l2 + Au2 (3.17)

l2u1 ≥ l1 + Au1 (3.18)

u1l2 ≤ Al2 + u2 (3.19)

u2l1 ≤ Al1 + u1 (3.20)

so

Au1 + l1 ≤ l2u1 ≤ Al2 + u2 (3.21)

and

Au2 + l2 ≤ l1u2 ≤ Al1 + u1 (3.22)

from (3.21) and (3.22) we get

Au1 + l1 + Au2 + l2 ≤ Al2 + u2 + Al1 + u1

which implies

Au1 + l1 − Al1 − u1 ≤ Al2 + u2 − Au2 − l2
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so

A(u1 − l1 − l2 + u2) + (l1 − u1 − u2 + l2) ≤ 0

so

(A− 1)(u1 − l1 + u2 − l2) ≤ 0

but A > 1 so A− 1 > 0, hence

u1 − l1 + u2 − l2 ≤ 0

but both u1 − l1, u2 − l2 ≥ 0, so u1 − l1 + u2 − l2 ≥ 0. Hence,

u1− l1 +u2− l2 = 0 iff u1− l1 = 0 and u2− l2 = 0 iff u1 = l1 and u2 = l2

Now back to (3.17), (3.18), (3.19), (3.20).

from (3.17) l1l2 ≥ Al2 + l2, so l1 ≥ A+ 1

and

from (3.19) l2l1 ≤ Al2 + l2, so l1 ≤ A+ 1

so

l1 = A+ 1, so lim
n→∞

xn = l1 = u1 = A+ 1

Similarly, use (3.18) and (3.20) to get

l2 = A+ 1, so lim
n→∞

yn = l2 = u2 = A+ 1

which completes the proof.

Theorem 3.4.4. If A > 1, then the unique positive equilibrium (x̄, ȳ) =

(A+ 1, A+ 1) of system (3.1) is locally asymptotically stable.
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Proof. System (3.1) can be formulated as the system of first order recur-

rence equations (2.14). If Zn = (w
(1)
n , w

(2)
n , . . . , w

(k+1)
n , v

(1)
n , v

(2)
n , . . . , v

(k+1)
n )T ,

then the linearized equation of system (3.1) associated with (2.14) about the

equilibrium point (x̄, ȳ) = (A+ 1, A+ 1) is

Zn+1 = JZn

where

Zn+1 =



w
(1)
n+1

w
(2)
n+1

...

w
(k+1)
n+1

v
(1)
n+1

v
(2)
n+1

...

v
(k+1)
n+1



=



A+ v
(1)
n

v
(k+1)
n

w
(1)
n

...

w
(k)
n

A+ w
(1)
n

w
(k+1)
n

v
(1)
n

...

v
(k)
n


and the Jacobian matrix J is of the form:

J(2k+2)×(2k+2)

=
(
D

w
(1)
n
Zn+1 . . . D

w
(k+1)
n

Zn+1 D
v
(1)
n
Zn+1 . . . D

v
(k+1)
n

Zn+1

)
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=



0 0 . . . 0 0 1
A+1

0 . . . 0 −1
A+1

1 0 . . . 0 0 0 0 . . . 0 0

0 1 . . . 0 0 0 0 . . . 0 0

...
...

. . .
...

...
...

...
. . .

...
...

0 0 . . . 1 0 0 0 . . . 0 0

1
A+1

0 . . . 0 −1
A+1

0 0 . . . 0 0

0 0 . . . 0 0 1 0 . . . 0 0

0 0 . . . 0 0 0 1 . . . 0 0

...
...

. . .
...

...
...

...
. . .

...
...

0 0 ... 0 0 0 0 ... 1 0


Let λ1, λ2, ..., λ2k+2 be the eigenvalues of J . Define D =

diag(d1, d2, ..., d2k+2) be a diagonal matrix such that

d1 = dk+2 = 1, dm = dk+1+m = 1−mε, m = 2, 3, ..., k + 1

choose ε > 0 such that 0 < ε < A−1
(A+1)(k+1)

. Now,

D(2k+2)×(2k+2) =



d1 0 0 . . . 0

0 d2 0 . . . 0

0 0 d3 . . . 0

...
...

...
. . .

...

0 0 0 . . . d2k+2


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=



1 0 . . . 0 0 0 0 . . . 0 0

0 1− 2ε . . . 0 0 0 0 . . . 0 0

...
...

. . .
...

...
...

...
. . .

...
...

0 0 . . . 0 1− (k + 1)ε 0 0 . . . 0 0

0 0 . . . 0 0 1 0 . . . 0 0

0 0 . . . 0 0 0 1− 2ε . . . 0 0

...
...

. . .
...

...
...

...
. . .

...
...

0 0 . . . 0 0 0 0 . . . 0 1− (k + 1)ε


so for all m = 2, 3, . . . , k + 1,

1−mε ≥ 1− (k + 1)ε > 1− (k + 1)(A− 1)

(k + 1)(A+ 1)
=
A+ 1− A+ 1

A+ 1
=

2

A+ 1
> 0

so for all m, 1−mε > 0, hence D is invertible. Now,

DJD−1 =

0 0 . . . 0 0 1
A+1

d1
dk+2

0 . . . 0 −1
A+1

d1
d2k+2

d2
d1

0 . . . 0 0 0 0 . . . 0 0

...
...

. . .
...

...
...

...
. . .

...
...

0 0 . . . dk+1

dk
0 0 0 . . . 0 0

1
A+1

dk+2

d1
0 . . . 0 −1

A+1

dk+2

dk+1
0 0 . . . 0 0

0 0 . . . 0 0 dk+3

dk+2
0 . . . 0 0

...
...

. . .
...

...
...

...
. . .

...
...

0 0 . . . 0 0 0 0 . . . d2k+2

d2k+1
0


Now, we want to show that the sum of the absolute value of entries of

each row is less than one, in order to find the infinite norm of DJD−1. Since
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ε > 0 so 1−mε > 1− (m+ 1)ε, that is, dm > dm+1, for all m. So

d2

d1

< 1,
d3

d2

< 1, . . . ,
d2k+2

d2k+1

< 1

For
1

A+ 1

dk+2

d1

+
1

A+ 1

dk+2

dk+1

=
1

A+ 1
+

1

(1− (k + 1)ε)(A+ 1)

<
1

1− (k + 1)ε

1

(A+ 1)
+

1

1− (k + 1)ε

1

(A+ 1)

=
2

(1− (k + 1)ε)(A+ 1)
use Lemma 2.3.4

< 1

Since J has the same eigenvalue as DJD−1. Then,

ρ(J) = max{|λi|} ≤ ‖DJD−1‖∞

but

‖DJD−1‖∞ = max
{

d2
d1
, d3
d2
, . . . , dk+1

dk
, 1
A+1

+ 1
(1−(k+1)ε)(A+1)

}
< 1

So the modulus of every eigenvalue of J is less than one. Hence, the unique

equilibrium point (x̄, ȳ) = (A+ 1, A+ 1) of system (3.1) is locally asymptot-

ically stable.

Theorem 3.4.5. If A > 1, then the unique positive equilibrium (x̄, ȳ) =

(A+ 1, A+ 1) of system (3.1) is globally asymptotically stable.

Proof. Using previous theorem,the unique positive equilibrium (x̄, ȳ) =

(A+ 1, A+ 1) of system (3.1) is locally asymptotically stable. And by The-

orem(2.3.2) the equilibrium point is global attractor, so the unique positive

equilibrium (x̄, ȳ) = (A+ 1, A+ 1) of system (3.1) is globally asymptotically
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stable.

Theorem 3.4.6. If A ≥ 1, system (3.1) has no non-oscillatory positive

solutions (has no infinite positive semi-cycle).

Proof. On the contrary, assume system (3.1) has a non-oscillatory solu-

tion say {xn, yn}∞n=−k which has an infinite positive semi-cycle, and as-

sume this semi-cycle starts with (xN , yN), where N ≥ −k. Then for all

n ≥ N, (xn, yn) ≥ (A+ 1, A+ 1), hence

xn+1 = A+
yn
yn−k

≥ A+ 1 implies yn ≥ yn−k for n ≥ N − 1

and

yn+1 = A+
xn
xn−k

≥ A+ 1 implies xn ≥ xn−k for n ≥ N − 1

using Theorem 3.4.2, there exist two real numbers Q,P such that for all

n ≥ k + 2, xn ≤ Q, yn ≤ P . So for all n ≥ max{N − 1, 2k + 2} (since we

need n− k ≥ k + 2) we get

A+ 1 ≤ xn−k ≤ xn ≤ xn+k ≤ · · · ≤ Q and

A+ 1 ≤ yn−k ≤ yn ≤ yn+k ≤ · · · ≤ P

similarly, in case A = 1, using Theorem 3.3.1, the solution is also bounded

for all n ≥ −k which means that {xn}, {yn} have k subsequences

{xnk}, {xnk+1}, ..., {xnk+(k−1)} and {ynk}, {ynk+1}, ..., {ynk+(k−1)}

each subsequence is increasing and bounded from above, so each one of them
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is convergent, so for all i = 0, 1, ..., k − 1 there exist γi, δi such that

lim
n→∞

xnk+i = γi and lim
n→∞

ynk+i = δi

Thus,

(γ0, δ0), (γ1, δ1), . . . , (γk−1, δk−1)

is a k-periodic solution of system (3.1), which contradicts Theorem 3.1.2

unless the solution is the trivial solution. Hence, the solution converges to

the equilibrium, which is a contradiction, because the solution is diverging

from the equilibrium. Hence, system (3.1) has no non-oscillatory positive

solutions when A > 1.

Corollary 3.4.7. If A ≥ 1, then every solution {xn, yn}∞n=−k to system (3.1)

oscillates about the equilibrium (x̄, ȳ) = (A+ 1, A+ 1) with semi-cycles such

that if there exists a semi-cycle with at least k terms, then every semi-cycle

after that has at least k + 1 terms.

Proof. Using Theorem 3.4.6, system (3.1) has no non-oscillatory positive

solutions since A ≥ 1, and Theorem 3.1.4 implies that system (3.1) has no

non-oscillatory negative solutions. Thus, by Theorem 3.1.1 every solution of

system (3.1) oscillates about the equilibrium (x̄, ȳ) = (A + 1, A + 1) with

semi-cycles such that if there exists a semi-cycle with at least k terms, then

every semi-cycle after that has at least k + 1 terms. .
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3.5 Numerical Examples

In this section, we provide numerical examples done using MATLAB, to

illustrate the results we have in chapter 3. Each example represent a different

type of the dynamical behavior of solutions of (3.1).

Example 3.5.1. Consider the following system of two difference equations:

xn+1 = A+
yn
yn−5

, yn+1 = A+
xn
xn−5

, n = 0, 1, . . . (3.23)

with A = 0.5, and the initial conditions x−5 = 2.5, x−4 = 0.7, x−3 =

3, x−2 = 0.3, x−1 = 3.5, x0 = 0.2, y−5 = 0.2, y−4 = 3.3, y−3 = 0.2, y−2 =

2.3, y−1 = 0.7, y0 = 3.9. Then the solution of system (3.23) is unbounded

because 0 < A < 1 (see Theorem 3.2.1), and the unique positive equilibrium

(x̄, ȳ) = (1.5, 1.5) is not globally asymptotically stable (see Figure 3.1).

Figure 3.1: The plot of the positive solution of system (3.23) with A = 0.5



3.5 Numerical Examples 75

Example 3.5.2. Consider system (3.23) with A = 2, and the initial condi-

tions x−5 = 1.5, x−4 = 0.3, x−3 = 2, x−2 = 0.3, x−1 = 2.5, x0 = 4, y−5 =

0.2, y−4 = 3, y−3 = 1.2, y−2 = 2.1, y−1 = 1.8, y0 = 0.9. Since A > 1,

the solution of system (3.23) is bounded and persists (see Theorem 3.4.2),

and the unique positive equilibrium (x̄, ȳ) = (3, 3) is globally asymptotically

stable (see Figure 3.2, Theorem 3.4.5).

Figure 3.2: The plot of the positive solution of system (3.23) with A = 2

Example 3.5.3. Consider the following system of difference equations:

xn+1 = A+
yn
yn−6

, yn+1 = A+
xn
xn−6

, n = 0, 1, . . . (3.24)

with A = 3, and the initial conditions x−6 = 3.6, x−5 = 0.1, x−4 =

1.1, x−3 = 4.3, x−2 = 0.5, x−1 = 0.2, x0 = 1.1, y−6 = 2, y−5 = 0.9, y−4 =

2.2, y−3 = 1.5, y−2 = 0.7, y−1 = 3.9, y0 = 3. Then the unique positive
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equilibrium (x̄, ȳ) = (4, 4) is globally asymptotically stable since A > 1 (see

Theorem 3.4.5), and the solution of system (3.24) is bounded and persists

(see Figure 3.3, Theorem 3.4.2). Note that in this example k = 6 is even,

while in Example 3.5.2, k = 5 is odd, but in both cases we had the same

conclusion

Figure 3.3: The plot of the positive solution of system (3.24) with A = 3

Example 3.5.4. Consider system (3.23) with A = 1, and the initial condi-

tions x−5 = 3, x−4 = 1.1, x−3 = 2.2, x−2 = 1.5, x−1 = 3, x0 = 1.5, y−5 =

0.5, y−4 = 3, y−3 = 1.5, y−2 = 4, y−1 = 1, y0 = 3. Since A = 1 and k = 5 is

an odd integer, then the solution of system (3.23) is two periodic solution (see

Theorem 3.3.3), and the solution is also bounded (see Theorem 3.3.1), and

the unique positive equilibrium (x̄, ȳ) = (2, 2) is not globally asymptotically

stable (see Figure 3.4).
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Figure 3.4: The plot of the positive solution of system (3.23) with A = 1

Example 3.5.5. Consider the following system of difference equations:

xn+1 = A+
yn
yn−4

, yn+1 = A+
xn
xn−4

, n = 0, 1, . . . (3.25)

with A = 1, and the initial conditions x−4 = 3, x−3 = 1.5, x−2 = 3, x−1 =

1.5, x0 = 3, y−4 = 1.5, y−3 = 3, y−2 = 1.5, y−1 = 3, y0 = 1.5. Since

A = 1 and k = 4 is an even integer, Then the only two periodic solution of

(3.25) is the equilibrium solution (see Theorem 3.3.3), and the unique positive

equilibrium (x̄, ȳ) = (2, 2) is globally asymptotically stable (see Figure 3.5).



Figure 3.5: The plot of the positive solution of system (3.25) with A = 1
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Conclusion

In this research, we solved an open problem proposed in [10] by Gumus

(2018). We expanded the work on system (1.9) to a system with different

parameters and investigated its dynamical behavior. We also introduced the

symmetrical system of two rational difference equations (3.1) and studied the

global behavior of its positive solutions.

79



Future Work

Our research can be expanded into more complicated related systems.

The study of systems (3.1), (1.1) and (1.6) can be extended to systems with

distinct parameters. Whereas system (2.1) can be extended to a system with

different parameters and powers. Now, we will give some open problems that

can be investigated next.

Open Problem 1. Investigate the dynamical behavior of the system

xn+1 = A+
yn
yn−k

, yn+1 = B +
xn
xn−k

, n = 0, 1, . . .

with parameters A,B > 0, the initial conditions xi, yi are arbitrary positive

numbers for i = −k,−k + 1, ..., 0 and k ∈ Z+.

Open Problem 2. Investigate the dynamical behavior of the system of two

difference equations

xn+1 = A+
yn
xn−k

, yn+1 = B +
xn
yn−k

, n = 0, 1, . . .

where the parameters A,B are positive, the initial conditions xi, yi ∈ (0,∞)

for i = −k,−k + 1, ..., 0 and k ∈ Z+.
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Open Problem 3. Investigate the dynamical behavior of the system

xn+1 = A+
yn−k
xn

, yn+1 = B +
xn−k
yn

, n = 0, 1, . . .

with parameters A,B > 0, the initial conditions xi, yi are arbitrary positive

numbers for i = −k,−k + 1, ..., 0 and k ∈ Z+.

Open Problem 4. Investigate the dynamical behavior of the system of two

nonlinear difference equations

xn+1 = A+
ypn−k
yqn

, yn+1 = B +
xpn−k
xqn

, n = 0, 1, . . .

where the parameters A,B > 0, the parameters p, q are nonnegative, the

initial conditions xi, yi are arbitrary positive numbers for i = −k,−k+1, ..., 0

and k ∈ Z+.

81



Bibliography

[1] Abu-Saris, R. M., Devault, R. (2003). Global Stability of yn+1 = A +

yn
yn−k

. Applied Mathematics Letters, 16 (2), 173− 178.

[2] Camouzis, E., Papaschinopoulos, G. (2004). Global asymptotic behav-

ior of positive solutions on the system of rational difference equations

xn+1 = 1 + xn

yn−m
, yn+1 = 1 + yn

xn−m
, Applied Mathematics Letters, 17 (6),

733− 737.

[3] Clark, D., Kulenovic, M. R. S., Selgrade, J. F. (2003). Global asymp-

totic behavior of a two-dimensional difference equation modelling com-

petition. Nonlinear Analysis, 52, 1765− 1776.

[4] Devault, R., Kent, C., and Kosmala, W. (2003). On the recursive se-

quence xn+1 = p + xn−k

xn
. Journal of Difference Equations and Applica-

tions, 9 (8), 721− 730.

[5] Din, Q. (2014). On the system of rational difference equations. Demon-

stratio Mathematica, 47 (2), 324− 335.

82



BIBLIOGRAPHY 83

[6] Din, Q., Ibrahim, T. F., and Khan, K. A. (2014). Behavior of a compet-

itive system of second order difference equations. The Scientific World

Journal, 2014, Article ID: 283982.

[7] Elaydi, S. (1996). An introduction to difference equations. New York,

NY: Springer-Verlag New York.

[8] Elaydi, S. (2007). Discrete chaos: with applications in science and en-

gineering. Boka Raton, FL: Chapman and Hall/CRC.

[9] El-Owaidy, H. M., Ahmed, A. M., and Mousa, M. S. (2004). On asymp-

totic behaviour of the difference equation xn+1 = α + xn−k

xn
. Applied

Mathematics and Computation, 147 (1), 163− 167.

[10] Gumus, M. (2018). The global asymptotic stability of a system of differ-

ence equations. Journal of Difference Equations and Applications, 24 (6),

976− 991.

[11] Hu, G. (2016). Global behavior of a system of two nonlinear difference

equations. World Journal of Research and Review, 2 (6), 36− 38.

[12] Okumus, I., Soykan, Y. (2018). Some technique to show the bounded-

ness of rational difference equations. Journal of Progressive Research in

Mathematics, 13 (2), 2246− 2258.

[13] Ozban, A. Y. (2006). On the positive solutions of the system of ratio-

nal difference equations xn+1 = 1
yn−k

, yn+1 = yn
xn−myn−m−k

. Mathematical

Analysis and Applications, 323, 26− 32.



BIBLIOGRAPHY 84

[14] Ozban, A. Y. (2007). On the system of rational difference equations

xn = a
yn−3

, yn = byn−3

xn−qyn−q
. Applied Mathematics and Computation, 188,

833− 837.

[15] Papaschinopoulos, G., Papadopoulos, B. K. (2002). On the fuzzy differ-

ence equation xn+1 = A+ xn

xn−m
. Fuzzy Sets and Systems, 129, 73− 81.

[16] Papaschinopoulos, G., Schinas, C. J. (1998). On a system of two non-

linear difference equations. Journal of Mathematical Analysis and Ap-

plications, 219 (2), 415− 426.

[17] Papaschinopoulos, G., Schinas, C. J. (2000). On the system of two differ-

ence equations xn+1 = A+ xn−1

yn
, yn+1 = A+ yn−1

xn
. International Journal

of Mathematics and Mathematical Science, 23 (12), 839− 848.

[18] Saleh, M., Aloqeili, M. (2005). On the rational difference equation

yn+1 = A+ yn−k

yn
. Applied Mathematics and Computation, 171, 862−869.

[19] Saleh, M., Aloqeili, M. (2006). On the difference equation yn+1 = A +

yn
yn−k

with A < 0. Applied Mathematics and Computation, 176, 359−363.

[20] Saleh, M., Aloqeili, M. (2006). On the rational difference equation

yn+1 = A+ yn
yn−k

. Applied Mathematics and Computation, 177, 189−193.

[21] Yang, X., Liu, Y., Bai, S. (2005). On the system of high order rational

difference equations xn = a
yn−p

, yn = byn−p

xn−qyn−p
. Applied Mathematics and

Computation, 171, 853− 856.

[22] Zhang, D., Ji, W., Wang, L., and Li, X. (2013). On the symmetrical

system of rational difference equations xn+1 = A+ yn−k

yn
, yn+1 = A+ xn−k

xn
.

Appl. Math., 4, 834− 837.



BIBLIOGRAPHY 85

[23] Zhang, Q., Zhang, W., Shao, Y., and Liu, J. (2014). On the System

of High Order Rational Difference Equations. International Scholarly

Research Notices, 2014, 1− 5.

[24] Zhang, Q., Yang, L., and Liu, J. (2013). On the Recursive System xn+1 =

A+ xn−m

yn
, yn+1 = A+ yn−m

xn
. Acta Math. Univ. Comenianae, 82 (2), 201−

208.

[25] Zhang, Y., Yang, X. F., Evans, D. J., and Zhu, C. (2007). On the

Nonlinear Difference Equation System xn+1 = A+ yn−m

xn
, yn+1 = A+xn−m

yn
.

Computers and Mathematics with Applications, 53 (10), 1561− 1566.


